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ABSTRACT

In this report, attentiéﬁ is focused on a method of investi-
gating physical problems, which is referred to as the "direct"
method, The method is then applied to the problems of liquid
rocket engine combustion and detonations.

The "direct"” method of analyzing a physical problem consists
of i) measuring some specific variables ii) solving basic equations
using the measured quantities to determine more of the unknown vari-
ables and, in the process, learning more about the nature of the phys-
ical problem and then iii) formulating the proper, complete physical
model., This method contrasts with the more conventional approach
where the complete model is proposed first. Occasionally the "direct"
method has been used in the past (and called the "inverse" approach),
hut more as a clever trick to solve a specific problem than as a gen-
eral method., To prove the generality of the "dircct" method, this
author has formalized the steps for its application. Advantages are
shown in that the "direct" method: makes optimal use of the experi-
mental data; provides a check on their accuracy; leads to mathemati-
cal simplifications and to the possibility of checking assumptions;
allows one to gain insight into an unresolved physical problem and
helps to define a correct model for it. The author is not aware
of any previous generalization of the "direct" method and believes
that such a generalization should encourage other applications.

By applying the "direct" method to the problem of steady liquid
rocket combustion, it is shown that static pressure measurements

along the engine are sufficient to determine all the gas variables
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and the amount of vaporized propellant if only one propellant is in
liquid form. No use is made of any drop drag, vaporization or dis-
tribution models; this can simplify development-stage engine studies.
Useful to analytical instability studies are the conclusions (for
the LOX/ethanol system) that: the steady-state is not axially uni-
form; the combustion is axially more distributed than current drop
drag and'vaporization models predict; the ﬁse of a distribution
function is not essential; drag and vaporization effects on the
momentum equation of the gas are of the same order; the energy
source 1is not proportional to the mass source: and the initial mo-
menta of the liquids should not be neglected in steady-state com-
putations, A non axially uniform steady-state contrasts

with the uniformity assumption usually made in theoretical studies
and it confirms the findings of other investigators (e.g., Rocket-
dyne group).

The "direct" method has previously been applied to various
aspects of the detonation problem. Here it leads to the derivation
of a new functional form for the equation of state of the products
of solid explosives. However, most of the study is concentrated
on a method which allows one to compute the detonation variables
without knowing the equation of state of the products if the de-
tonation velocity versus the loading density is known. Its re-
lationship to the Chapman-Jouguet theory is investigated. The two
methods, although apparently different, are shown to yield very
similar results, It is shown that a rough form of this method was
previously used by Zel'dovich, although he thought he was applying

the Chapman-Jouguet condition,
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INTRODUCTION

In the Abstract, the content of this report was briefly
summarized. This section is now used to introduce the reader
to the subjects treated in this report. Three main subjects,
rather than just one, are discussed so that some preliminary
considerations on their inter-relationship might be of help
to the reader.

The three subjects are i) the "direct" method (Section 1),
ii) one-dimensional, laminar detonation problems (Section 2),
and iii) the steady rocket combustion of the LOX/ethanol sys-
tem (Section 3),

Interest is centered on the "direct" method; however, the
two specific problems have been treated as thoroughly as possible
so as to constitute two relatively complete studies. The studies
are used as examples of applications of the "direct" method.
Accordingly, there is no concluding section to the over-all
report, but rather two concluding sections, one for the detona-

tion problem (Section 2.6) and the other for the steady combus-

for a concluding section on the "direct" method, since the method
and related properties are explained in Section 1 and applications
are given in the other sections. The section on steady combustion
of the LOX/ethanol system is the longest of all the sections be-
cause this was the topic of principal concern and effort at
Princeton.

In Section 1, the "direct" method of solving a physical
problem is defined, and its properties are listed., Here it might

tion of the LOX/ethanol system (Section 3.7). There was no need
be useful to introduce this method in a less rigorous, more



discoursive way. A researcher who has to solve a new problem

can often make some assumptions and write equations that, from

his previous experience, he is rather confident will be valid.

To complete his model, however, other assumptions and equations
will be necessary whose validity is more uncertain and will be
finally proved or disproved by experiments. Making these more
uncertain assumptions, solving the complete set of equations and
comparing the results with experimental data is what is here
called the "conventional" way of solving a problem. The "direct"
way consists of avoiding the use of the more uncertain assumptions
and using instead experimental data. One looks at the equations
which are believed to be reliable and decides which variables
should be measured to avoid making the more uncertain assumptions.
After having measured these variables, the more reliable equa-
tions are solved, and only then are the more uncertain assumptions
studied. Both methods require experimental data sooner or later.
The "direct"” method uses this data more efficiently and offers
other specific advantages which are listed in this report. This
method is here called "direct" since it makes direct use of the
experimental data to gain maximum information about a given prob-
lem rather than using them only to verify already obtained solu-
tions. The "direct" method seems to the author to be the more
natural one, particularly for complicated physical problems, since,
if for no other reasons, it squeezes maximum information out of

a set of experimental data. This method has previously been
applied by other researchers (and called the "inverse" approach)
but this author is not aware of any previous formalization of it

and believes that some of the properties, listed in this report,
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either were not known or were overlooked. Formalizing the
method should aid in its application.

In Section 2.0, where laminar one-dimensional steady detona-
tions are considered, a method is introduced which allows one to
compute the detonation parameters without knowing the equation of
state of the products but using "directly" measured detonation
velocities versus loading density. This method is here called
the envelope method and gives results which are close to those
given by the various Chapman-Jouguet models. The physical reasons
why this method leads to reasonably good results for both gaseous
and solid explosives are not known. The relationship of the en-
velope method to the various Chapman-Jouguet models is illustra-
ted and, in the process, the state of the art of laminar one-
dimensional steady detonation studies is reviewed. A functional
form for the equation of state of the products of solid explo-
sives 1s then given.

In Section 3.0, the "direct"” method is applied to the prob-
lem of steady liquid rocket combustion. It is then shown that
the gas variables (pressure, velocity, density, temperature,
composition, etc.) and the amount of vaporized propellant can be
calculated if any one of the gas variables is first measured along
the engine (generally static pressure or gas velocity) and if only
one propellant is in liquid form at the station at which the gas
variable is measured (if two propellants are present in liquid
form, then two gas variables should be measured). No use is made
of any droplet drag, vaporization, breakup or distribution models
and the detailed knowledge of the processes occurring in the in-
jector region is not necessary. Those models are necessary, on

the contrary, if one follows the "conventional" approach. The
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validity of the results obtained by conventional approaches are
then subject to the validity of those models, whereas the results
obtained by the direct method are not. By the direct method it was
thus possible to show that the assumption of instantaneous chemical
equilibrium of the reaction products leads to good results for the
LOX/ethanol system. It was also shown that the steady state of the
LOX/ethanol system is likely to exhibit marked axial nonuniformaties.
Similar nonuniformities were previously calculated by conventional
approaches by other researchers {(at Rocketdyne, for example) and had
been previously indicated by c* measurements (at Princeton, for ex-
ample). However conventional studies include so many uncertain
and sensitive assumptions that conclusions about the validity
of dny one of them must be considered only indicative (see for
example the sensitivity of steady-state computations to the vapori-
zation rate equation, to the initial dfﬁp radius and to the drag
equation in Section 3.6). Similarly c* measurements yield only
indicative results. Possibly for these reasons the steady state
has always been assumed to be axially uniform in theoretical in-
stability studies. It is then shown that axial nonuniformity can
lower the frequency of a perturbation wave by some 20% with respect
to its value calculated under the uniformity assumptions (Section
3.5). Other results of interest to theoretical instability studies
have already been pointed out in the abstract and are summarized
in Section 3.7. It should also be pointed out that this study was
undertaken with the purpose of better relating instability studies
tc the actual steady combustion. Thus the effort was not toward
considering the most complete of the available steady-state models
but rather toward finding the simplest schematization that would
contain the main physical elements and lead to a reasonably accur-

ate description.

e g o R e e - e




SECTION 1.0 THE "DIRECT" METHOD

The "conventional" way of investigating a physical problem
consists of the following three steps:
i) Formulation of a model
ii) Solution of corresponding equations
iii) Comparison of theoretical results with ex-
perimental data.

The "direct" way of investigating the same physical problem

consists of the following steps:
i) Collection of experimental data
ii) Solution of basic equations using direct
experimental data
iii) Search of the model.

To illustrate the meaning of the above definitions, a hy-
pothetical example is given first., Next, the two specific ap-
plications treated in this report are introduced from the view
point of the direct approach. These are, the problem of deto-
nation, and that of steady liquid propellants rocket combustion
Finally the properties of the direct method are listed. The
properties will again be pointed out during the development of

the two specific applications.

1.1 The General Idea and an Illustrative Example

For simplicity, consider a one-dimensional, steady flow in
a duct of slowly varying cross sectional area. Assume that both
the thermal and the caloric equations of state of the fluid are

not known. Assume also that latent energy is added to the flow

by some chemical reaction of unknown nature or rate. The fol-




lowing equations can then be written between any two sections

of the duct:
L% A = U, Az

g, WA+ BA, fj bdA - f0 A+ B

' T
Lo, u e, + L + s
At A AL T A

P = P ( ’/ T' X‘. )
c=e(r,7, X;)
where the first three equations represent the conservation of
mass, momentum and energy (with the energy source, | unknown)
and the last two represent the missing thermal and caloric equa-
tions of state,
The conventional way of attacking the problem would be that
of formulating a model which would lead to expressions for the
. energy source and for the equations of state. The above five
equations would then be solved, Finally a quantity would be
measured, say, the pressure along the duct and comparcd with the
predicted one. The model would be modified until theoretical
and experimental results match. Notice the fellowing points:
1) The experimental data were used only to check
the theoretical results and helped little or
not at all in the process of formulating the
model.
2) There is no way of knowing how accurate the
experimental data are. The experimental data
could be in error and the model might be ad-

justed to predict the wrong data.




3) In the theoretical study a system of five
coupled equations had to be solved. To
reach the solution certain approximations

might be necessary.

4) In the formulation of the model many assump-
tions are usually made. If the model yields
results not quite in agreement with the ex-
perimental ones, some difficulty may arise in
deciding which of the assumptions should be
modified.

The direct way of attacking the problem is to use the
measured experimental pressure to solve the first two conserva-

tion equations without any assumption concerning the energy source

and the equations of state. One notices that the first two equa-

S measured

(=N

tions contain three unknowns, p, f ¥ . Thus, if Y

and P and w are given at some initial section, they can be com-

Setting f=f:,/f, ) U= U /Y, ,ﬁ”. 4, Az A/A, one gets:
w = 1= LCPA-I- [Apdad/LLu/p]

L = '/’V.A
Now the investigator not only knows p but also knows pandw and he
has more information on which to base his search for a model.
Notice the following points:
1) Experimental data are needed in both approaches
sooner or later. 1In the direct approach one
squeezes more out of the experimental data since

the knowledge of p led to the knowledge of p



and g without any more assumptions than were
. already imbedded in the equations (Experimental
Data Information Optimization).
2) After having determined P and W one can make
a few measurements of 4 and see if it agrees
with that calculated by the first two equations.
If it does, the first two equations are correct
and pressure measurements are reliable. If it
does not, either there is an error in the meas-
urements or in the first two equations (for ex-
ample, friction should not have been neglected).
(Experimental Data Check).
3) The system of five equations has been split into
. two systems. A system of two equations (already
solved) and a system containing the remaining
three equations still to be solved. In the di-
rect approach the mathematics is then simpler.
(Mathematical Simplification and Set Splitting).
4) When the equations were split so were the as-
sumptions. The assumptions going into the first
two equations can be checked independently of
the assumptions going into the remaining three
equations (Assumptions Splitting).
The direct method offers other advantages which will be listed
in the next section. They fundamentally stem from the fact that
one can solve for some of the unknowns even if he does not know

‘ many aspects of his problem. The unknown aspects can then more

S




easily be investigated, since more information is then available
and some features or properties of the problem have already been
determined (Parameterization and Maximum Information). The first
two steps of the "direct" method have thus been illustrated:

i) gathering of the experimental data, ii) solution of
basic equations directly using experimental data. The third
step, i.e., search of the model, can then be carried out by either
studying that part of the solution which has become available and
try to infer from it the complete solution or by trying several
possible models and seeing how they fit the reduced set of equa-
tions (the last three equations, in the above example). The lat-
ter approach is expected to be the one more commonly used., 1It
should be stated that the above considerations are not just con-
jectures. They are strictly facts that this author has estab-
lished in specific applications of the direct method. Two of
such applications will be discussed at length in this report.

The first application is to the problem of the detonation

ot solid explosives. The missing eguation is the eguation of
state of the explosion products. The measured quantity is the
detonation velocity versus the density of the explosive. Re-
searchers using the "conventional" approach assumed several

types of equation of state, solved their equations and compared
their calculated velocities with the measured one. By the proper
choice of a few constants appearing in their equation of state,
they all were able to correlate well with the measured parameter,
Their calculated energies and temperatures, however, varied con-

spicuously. By the "direct" approach (using as known quantity




the measured detonation velocity versus the density of the ex-
plosive) it was possible to show that detonation pressure, dens-
ity and particle velocity can be calculated without using any
equation of state while the detonation energy and temperatures
are functions of the assumed equation of state. The general
form of the equation of state was also derived. The problem of
the actual equation of state is still unsolved vyet one can now
calculate many parameters without knowing the equation of state
and the class of functions, to which this equation of state be-
longs 1s now known. This much was not known previous to the
application of the "direct" method, yet no extra information
was used in the application of the "direct" method than has al-
ways been used in the application of the "conventional" method,
Finally, the calculations by the "direct" method were consider-
ably simpler than those required by the "conventional" method.

The sccond application is to the problem of the steady state in

liquid propellant rocket engines. The missing relations are

+h e~
Lhavol Quve

ured quantity is the static pressure or the particle velocity
along the engine. Researchers using the "conventional" approach
assumed certain droplet distribution, drag, and vaporization
models, solved the equations and compared their calculated static
pressure (or any other parameter) with the measured one. By the
"direct" approach the measured static pressure (or particle ve-
locity) was used. Then without any droplet distribution, drag,
and vaporization model, all the combustion variables were cal-

culated, namely: temperature, density, particle velocity, chem-~
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ical composition, flux of unvaporized fuel, etc. During this
process much was 1eafned about steady liquid propellant rocket
combustion. Then some droplet distribution, drag, and vapori-
zation models were studied with the purpose of selecting that

one which gives all the calculated parameters. A third appli-

cation of the "direct" method is briefly reviewed in Section
4,0. It is not due to this author but to Ya. B. Zel'dovich.
It is in connection with the problem of unsteady solid propel-
lant combustion where Zel'dovich suggested the direct use of
experimental data thus avoiding the problem of formulating a
model for the gaseous flame., Zel'dovich used directly experi-
mental data also in connection with the problem of solid ex-
plosives (Section 2.2). Thus it seems as if Zel'dovich found

it natural and rewarding to think "directly." A fourth appli-

cation of the "direct" method is not discussed in this thesis
but will be discussed in a separate report. It is in connec-
tion with unsteady liquid propellant combustion. It has been

PO P
1

a very difficult application on which this author has actually
spent most of his time as a graduate student. Professor
Crocco suggested that a step shock be generated at the nozzle
end of a liquid propellant rocket motor and its changes, as it
moves toward the injector into the active combustion zone, be
measured with the intent of studying the unsteady processes by
which energy is fed into the shock. By measuring the pressure
after the shock front at several locations along the motor,

one experimentally determines P'b(*,t). The one-dimensional,

unsteady mass, momentum and energy conservation equations can
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then be used to computer:f(‘o',f), U=u(x,¢t) and Q- Q (=, ¢t )
where @ 1is the unsteady mass-energy source., It is not neces-
sary to postulate any droplet distribution, drag and vaporiza-
tion models. On the contrary, such models can be studied a pos-
teriori after having determined the unsteady pressure, density,
particle velocity and mass-energy source. However, in order to
obtain meaningful results from this unsteady liquid propellant
combustion study, it was found necessary to achieve first a more
accurate and specifio understanding of the steady liquid propel-
lant combustion. This originated the investigation of the steady

combustion of the LOX/ethanol system reported in Section 3.0.

1.2 Properties Of The "Direct" Method

The above examples illustrate the usefulness of the "direct"
method in cases when the model of a certain process is expected
to be complex and when many models would seem to be just as rea-
sonable. The properties of "direct" method are:

1) Experimental Data Information Optimization:

The use of some experimental data directly in
the basic equations allows the evaluation of
all (or most of) the unknowns of a given prob-
lem. One has thus extracted maximum informa-
tion from the experimental knowledge of a few
parameters since by that he has calculated all
(or most of) the unknowns.

2) Experimental Data Check:

It would appear that the "direct" approach re-

quired more accurate experimental measurements,
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To be used in the "direct" approach, the data must
consistently fall on identifiable lines. Can one
honestly use data which do not consistently fall
on identifiable lines to verify the predictions

of the "conventional" method? Researchers using
the "conventional' approach often do not bother
checking too closely the validity of the experi-
mental data. On the other hand, experimentalists
may not select the proper parameters to measure

or may honestly be unaware of their experimental
errors, Practice has shown that in using the
"direct"” method, seemingly consistent data were
actually found to be in error and, subsequently,
the source of error was identified. The reason

is that when the experimental data are used in the
basic equations and the equations are solved, the
newly determined parameters often take on unreal-
istic values if the data used are in error.

3) Mathematical Simplification:

Both methods require the same amount of experi-
mental data and the solution of the same basic
equations but for different unknowns. The achiev-
ing of the solution of the same basic equations is
then a problem of different difficulty in the two
methods, In the "direct” method one always has to
solve fewer equations than in the "conventionél"

one. In the "conventional" approach, a primary
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source of error may be hidden in the approximations
which are made to reach the more difficult solution.

4) Set Splitting:

An important aspect of the "direct" method is its
splitting of the equations into uncoupled groups.
This in turn, simplifies further the task of solv-
ing the equations and occasionally might reduce the
number of parameters to be measured. 1In the prev-
ious example, the researcher investigating the pipe
flow could have postulated a model in which all the
five unknowns entered, and his five equations would
then have been coupled. On the other hand, by meas-
uring p  and using it directly, his first two equa-
tions become uncoupled (containing only P and W as
unknowns) and this is quite independent of what the
actual model would then turn out to be. Similarly,
in the solid explosion study, the system was split

into two systems: the firs

ct

one containing veloci-
ties, pressure and density, could be solved com-
pletely; the second one containing temperature and
energies,and including the unknown equation of state,
led only to the derivation of functional relation-
ships between its unknowns. The unknowns also split
- those belonging to one group will be completely

determined, those belonging to the other group will

be bound by functional relationships.
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Parametrization:

In the "direct" method, one looks at his basic equa-
tions and determines how many unknowns need to be
measured to solve them without formulating a complex
model. Usually one or more variables of the form
2e2(x) orézz(x,y) would need to be measured. TIf he
measures as many unknowns as he needs he can then
solve completely his equations for all the remaining
unknowns., On the other hand, if one measures less
unknowns than he would need he can still expect to

be able to calculate completely some of the variables
and to establish functional relationships between the
remaining ones! This is due primarily to the split-
ting property of the "direct" approach. 1In the case
of the solid explosive, the unknown equation of state
is of the form g= @ (%, ¥ ) whereas the measured quantity
(detonation velocity versus density of the explosive)
is of the form ée@ (#). 5till many variables were com-
pletely determined because the knowledge of the de-
tonation velocity uncoupled the system of equations,
However, in the liquid propellant steady-state study,
it turned out that instead of needing the full meas-
urement of two unknowns, as it appeared to be neces-
sary to split the system of equations, the measurement
of one unknown was actually sufficient. This was
achieved by finding solutions for specific values of

the second unknown. Thus a parametric set of solu-
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tions were obtained rather than an unique solution.
The family of solutions, however, turned out to be
narrow enough to be used as an unique solution.

The parametrization property is not really a prop-
erty of the "direct" apprdach but rather a property
of the physical process under consideration., How-
ever, it 1s when one starts thinking in terms of re-
stricted solutions that the possibility of useful

parametric solutions unfolds.

Assumption Splitting:

Associated with the property of splitting the equa-
tions into uncoupled groups, is the property of split-
ting the assumptions into groups as well. This prop-
erty is important and therefore is given separate
headings. 1In writing equations for a certain physi-
cal phenomenon several assumptions are made whose
validity may be equally uncertain. If the "conven-

t —_— 1~ ~
met

tional t

d AYTY a7

. . . .
elds icn which doesn quite

noa yieids t

a sol
agree with experimental data, the problem remains of
determining which of the leading assumptions is to be
corrected. The "direct" method yields the solution
of only some of the equations which incorporate only
some of the leading assumptions. If the results of
"direct" method don't agree with further experimental
data, one has then to review only a fraction of the

leading assumptions. Thus, in the example given in

this section, after having solved the direct problem,
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one might want to verify the validity of his so-
lution by measuring, say the gas velocity. Should
the gas velocity disagree with the calculated one,
the assumption of frictionless flow (the only sig-
nificant assumption going into the mass and momen-
tum equation as they are written), would be the
only one which could be wrong, But had the re-
searcher introduced a model through some assump-
tions and followed the "conventional" method, it
would have been more difficult to decide whether
the assumption of frictionless flow or those lead-
ing to his model were the wrong ones, Similarily
in the liquid propellant steady-state study the
only leading assumptions entering into the reduced
set of equations, used in the "direct" method, was
that of chemical equilibrium of the reaction prod-
ucts, This assumption could then be checked sep-

Had one used the complete set of cgua-
I Y

)

arately.
tions and followed the "conventional" approach fur-
ther uncertain assumptions would have been needed
about droplet distribution, motion and vaporization
and separation of the effects might have been im-
possible.

7) Maximum Information:

This last property is possibly the most important
yet the most difficult to define specifically.

Having a complex problem, there is always some
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variable which can be readily measured (like pressure
in fluid dynamics problems), The basic equations can
then be studied using directly the measured variable,
During this study a wealth of information about the

nature of the problem, the properties of its solution,

the ordering of the terms in the various equations and

the mathematical techniques to be used in the study of

the complete set of equations become available., This
is best illustrated by the discussion of the results
obtained by the "airect" approach for the problem of
steady-state liquid propellant combustion. It can be
stated that, in general, these results can be expected
to be of practical and theoretical values and can be
obtained within the first two steps of the "direct"
approach: i) measurement of some unknowns ii) solu-
tion of some of the equations using the measured un-
knowns, i.e., even before getting through the third
and last step (determination of the proper mcdel)
which would complete the application of the "direct"
method.

Both "direct" and "conventional" methods are equally effective
when the problem under consideration is physically simple and re-
lated to some problem whose secret is already known. It is not
difficult then to guess a reasonably good model for the new prob-
lem, neither should it be difficult to uncover the new law by
studying the results of the "direct" method. If the problem is

a complicated one, requiring one or more uncertain, yet far-
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reaching, assumptions then the "direct" method should be serious-
ly considered as the first one to be applied for its seven prop-

erties given above,
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2.0 DETONATION PROBLEMS

2.1 Introduction

In recent years "it has been indisputably established ex-
perimentally that the wave front of all self sustaining detona-
tions is three dimensional."l The wave front of what used to be
the Chapman-Jouguet (C-J), steady,one-dimensional, laminar de-
tonation front, with the Zel'dovich-von Neumann-Doring (ZND)
structure, of tube confined explosions has now been proved to
be actually made up of unsteady three dimensional shock patterns
which include Mach stems, curved shocks and transverse waves,
Most significantly the thickness of this unsteady three.dimen-
sional front is of the order of 10 times the thickness of the
old reaction zone. Within this new, nonuniform front, sharp
variations in the values of the various detonation variables
are found to exist so that concepts of average values become
hard to justify. The practical success of the various versions
of the C-J model in predicting detonation velocities is still
unquestionably recognized. Why they work so well will, sooner
or later, be explained. Presently, however, one must avoid
drawing too many conclusions based on theoretical considerations
of the C-J models.

The original suggestion of Chapman, that the actual detona-
tion velocity is the smallest of all velocities compatible with
the one-dimensional conservation equation, was not justified and
was accepted because it was successful in predicting the de-

tonation velocity of many explosives. In this section another

unjustified suggestion is made by which detonation pressure (p ),
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density ( p) and particle velocity (%) can be calculated if the
detonation velocity (V) versus the loading density (g ) is given.
This suggestion turned out being a reinterpretation, an exten-
sion and an improvement of the procedure used by Zel'dovich and
Kompaneets2 to show that, for solid explosives, the detonation
density is approximately 4/3 times the loading density. What
follows is again a one-dimensional treatment of the detonation
problem., In view of the complexity of the actual detonation
structure, the quantities herein called detonation variables
will have to be interpreted as average values at some distance
after the front roughly coinciding with the old C-J plane quan-
tities,.

This section is organized as follows: First the envelope
method is introduced. Next its relationship to the Zel'dovich-
Kompaneets method of calculating the detonation parameters of
solid explosives is illustrated. Application of the method to
gaseous and solid explosives and comparison with experimental
results are then made. The relationship between this method
and the various versions of the C-J model is then discussed.
For the purpose of this discussion, a brief review of the va-
rious C-J models is necessary and it is then given even though
it is recognized that they are now largely superceded. 1In this
context it might be interesting to notice that the conclusion
of the review is that the C-J model never quite achieved self
completeness. Finally, the problem of the equation of state of
the reaction products of solid explosives is re-examined in the

light of the results obtained with the current method.
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For the one-dimensional case, the conservation equations

through the shock can be written as follows:

v _ (U-w
(Mass Conservation) ;; - v (1)
2
T (U-w)
(Momentum Conservation) pt % = p+ == (2)
. ._- P+’. (f‘f)
(Energy Conservation) €-€-¥ = —J— % (3)

Where subscripted variables refer to conditions ahead of the
sho~k and the others to conditions at any distance (2 ) behind
the shock where conditions are stationary with respect to it.

At 22 , @ is the internal energy of the products and is related
to P ,v by the caloric equation of state, and p' is the chemical
heat released (difference between the enthalpy of formation of
the products and that of the reactants) and in general is also

a function of p , v . Mass and momentum conservation equations

also give:

Uz - b"bo
-v:-; T v (4)
® = t}('l- 5;) (5)

. ° .
Even assuming that esre(p,v) and ¢ » 4 (s, ) are known, Equa-
tions 1, 2 and 3 contain four unknowns: p , v , & and U.
Thus the one-~dimensional model is underspecified and some ad-

ditional assumption needs to be made,

2.2 The Envelope Method

Equation 4 defines straight lines (Rayleigh lines) in the

b, plane if U, p .¥, aregiven. For given U, p Ve the
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actual solution of the one-di-
mr~nsional problem will be rep-
resented by one point of the
corresponding Rayleigh line \
(Point A). Keeping the same \\ﬁ\ a
initial pressure, but increas-~ -f
ing slightly the initial dens- \
ity of the explosive, the de- RAYLEIGH \y"\\
LINES >

tonation pressure is known to 0 Voo
© ! E

increase, so that the new so- i

lution is represented by Point B. 3 L

It is assumed that, as ¥ varies, the point representing the so-

lution of the one dimensional problem moves along the envelope

generated by the corresponding Rayleigh lines (envelope assump-

tion). This assumption and the conservation equations constitute
a complete system of equations for the solution of the one di-
mensional problem. (In essence this envelope assumption replaces
the C-J assumption), Solving the complete set of equations with
the use of the envelope assumption would be the "conventional"
way of approaching the problem. However, detonation velocities
have been measured for many explosives for various loading dens-
ities. It is thus known3 that the detonation velocity of common
gaseous mixtures is approximately constant for a given ﬁ; and for
Vs varying within a wide range (Usa), while the detonation ve-
locity of common solid explosives increases with | A This in-
crease is linear (Vza+4p) over a relatively narrow range of gp's,

In keeping then with the "direct" way of looking at physical
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problems, the knowledge of UQUYJL ) will be used directly to-
gether with the conservation equations and the envelope assump-
tion to gain as much information about the various detonation
variables as possible.

It is then assumed that VaU(J, ) is known from experiments
and the envelope of the Rayleigh lines is determined eliminating
Vo (the paramecter of the envelope) between Equation 4 and its

derivative with respect to o (viylrmit -y P
]

tV'.'V'
f(hvrw)=p-U =25 =0 6)

0

v
2_£.=o = z(\r,-lrx——-"a—l)-r"i-’a
Y 4 {

Equation 7, for any givenVeVU( vp ), determines Vsv( vo ).
Thus, for Vs 04‘/1/;‘ one finds

z o +24/a

(8)

Having Ve Vv ( Y% ), Equation 6 can be used to give pej (Vs ) and

mass conservation will give Wew ( Vg )

we U("£)=U("") (9)

Where K is a weak function of Y6 for most solid explosives and
only 1ts average value ( % ) may usually, be considered (see
Table II Column 10). Eliminating Yo between Equation 8 and
Equation 6 one finds the equation of the envelope of the Rayleigh

lines and, by assumption, the locus of the detonation states

Ut e 4% _
k=';;—t(u;‘r) 5(2__};_ “("'K) (10)
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For a given Vg , the tangent to the above envelope from B Y%
gives the detonation variables,
Further specializing to the case in which U = @ (gaseous ex-

plosives) one finds

K= '/?. (11)
r= /2 | (12)
poat/avraVUlay2Uloy, 4 buscomr (13)
we Y2 (14)

And for the case in which U= 4 /ve (roughly valid for solid ex-

plosives) one finds

K= 3a (15)
(16)

2 2
p=23 U/"r = UA"' L4 bd": comsT, (17)
us= U/ (18)

However, for solid explosives, one usually should use U=o.+l/.r,

and the following relationships

_[ v-°+34/a.] .=

“.‘/‘ (i:." FoRr TNT) (19)

v = KVo (20)

b= %’n(.-«y Ut 4 b= (avsdn)n(i-0) (31

w= U("‘K) (22)
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For solid explosives, Zel'dovich and Kompaneets2 obtained,
Equations 15 through 18 by a method which, in appearance, is dif-
ferent from the previous one, but which will be shown to be ac-

tually identical, First they set

V= L/I’a (23)

Next they assumed that szhﬁn with kK a constant to be determined,
and substituted U and v into Equation 4 (notice the equation

of the Rayleigh lines) thus obtaining

2  ; ]
vt 4 K-') K-1
== (Ve-v)=s = — OR PsB 4 Ba € X!
Next they stated: "We can then determine the constant K from

the condition that the smallest possible detonation velocity
must be achieved in experiment. We now specify the law p= BJ3

and write (using again Equation 4)
Py
oL b By
= 25
Po ( f’ﬁ)) ’o ("’o) ( )

We now determine the value of‘f for which TJ is minimum given

B .ng J, - 1In order to do this we calculate

d u? B3 (3p-41)

— = = O 26
s P (P-1)* (26)
From which it follows that
4 4
PF=23bh k=3 (27)
2
b= -,:—'U uc'q'.v': .n

So they derived Equations 15 through 18, It would appear that
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Zel'dovich and Kompaneets satisfied the C-J condition of minimum
detonation velocity, but their calculation involves only momentum
and mass conservation (from which Equation 4 is derived) whereas
the C-J condition requires the selcction of the minimum detonation
velocity compatible with the complete system of equations (in-
cluding the energy equation). They actually found the minimum
detonation velocity compatible with Equation 4, i.e., the de-
tonation velocity which is obtained by drawing the tangent to

the envelope of the Rayleigh lines from l: » Yo . Actually they
overspecified their problem by assuming V:W/k and found a solu-
tion because the overspecification happened to be compatible.

To show this and to prove that Zel'dovich and Kompaneets method
leads exactly to Equation 7, one proceeds as follows: Given

UsU (V, ), assume that Ve =T (v ) (whereJ¥ (v) is an arbitrary
function of ¢ and setting W :=T(v) is equivalent to assuming
that p is an arbitrary function of f, ). Substitute V=V (%)

and VU, « T(¥) into Equation 24 to obtain p as a function of v

p= U T(\r)) %—‘:

Substitute p back in Equation 4 to obtain U as a function of

vV and 4
t
vie 2 Ut(wm) ZT
v, -V 7

Set the derivative of U?® with respect to ¢ equal to zero (which
2

is equivalent to setting the derivative of U with respect to P

equal to zero) and recall that ¢,aT(v) thus obtaining

7! [(T-vx zU';r-U)-o—U.rJ = 0
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Excluding the trivial solutions T =o ( Vo =0) and T'= 0 ( Y= const,),
one finds the condition by whichd:J (¢) is determined if WV (Vo) is
given
(vo-vX 2VU'w-U)+ Vv s=o

Which shows that, in general, one cannot start with selecting a
particular form of T (v) and still satisfy the above equation,
The function VY =7 (v) is uniquely determined by the above equa-
tion when UV =U () is given. Thus, for U= 4 /yone finds Veza4v)y.
Had Sel'dovich and Kompaneets started with, say, P> k%‘A?‘ with K
and M constants to be determined and proceeded as they indicated
they would have found K=4f s which shows that, for W to be
constant as assumed, m must be equal to 1. Thus finding again

f=4f./3 . In conclusion, the functional dependence VU = U’./g
is not an assumption, as Zel'dovich and Kompaneets state, but is
the unique solution of the problem. Re-arranging the terms of
the above equations, one finds again Equation 7, thus proving the
equivalence of the two approaches and explaining the real mean-

ing of the Zel'dovich and Kompaneets method,

2.3 Comparison with Experimental Results

Before proceeding to some comparisons with experimental re-
sults it should be reminded that detonation velocity measurements
can, it general, be considered accurate whereas detonation pressure
measurements are, in general, less precise. This is so mostly
because of the difficulty of defining which pressure has actually
been measured in a situation in which the pressure varies sharp-
ly within a very narrow region. Thus data interpretation and

extrapolation are often associated with pressure measurements.
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This uncertainty must be remembered whether the agreement be-
tween theoretical and experimental pressures is good or not good.
Gaseous ExXplosives:

The first seven columns of Table I are from Lewis and von
Elbe3 and give theoretical and experimental data for various gas-
eous mixtures, The theoretical data of Lewis and von Elbe (Col-
umns 2, 3, 4, 6 and 7) were calculated with the frozen Hugoniot
(equilibrium composition) C-J model which will be reconsidered
later. Taking the experimental detonation velocities of Column
5 and assuming that the detonation velocity does not change if
V. is changed and p is kept constant, one can calculate the de-
tonation pressure, density and partical velocity by Equations 11
through 14. The detonation pressures thus calculated are given
in Column 8., The detonation pressures measured by Gordon4 (mix-
tures number 1, 3, 4) and by Campbell, Littler, WhitworthS (mix-
ture number 1) are given in Column 9, 1t can be seen that the
envelope method seems to give results at least as good as the
C-J method used by Lewis and von Elbe.

Solid Explosives:

The first 6 columns of Table II are from Dremin6 et al and
give the measured values of the detonation variables for TNT and
RDX and for various loading density. The detonation velocity
wis measured by the ionization method (Column 3). The detona-
tion pressure was deduced by studying the transmission of the
detonation shock into various metals (Column 5). The detonation

particle velocity was then calculated (Column 4). The detona-
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tion particle velocity was also deduced by a second method in
which the reaction products displace a thin aluminum or copper
U-shaped obstacle, and the motion of the obstacle in turn pro-
duces an induced electromotive force that is monitored and
studied (Column 6). By this electromagnetic method the sound
speed in the reaction products was also deduced. Linear curve
fits of the measured detonation velocities (Column 3) were ob-
tained (see Fig. 1 and Column 7), and using Equations 19 through
22 the detonation variables were computed and are given in Col-
umns 8, 9, and 10. In Column 11 the detonation velocities of TNT
measured by MacDougall7 et al, are also given (see also Fig. 1)
and the corresponding detonation pressures calculated by the en-
velope method are given in Column 12, The detonation pressure
calculated by the envelope method is somewhat higher than the
one measured by Dremin, et al. However, the difference is not
too large particularly in view of the fact that the experimental
pressure data cannot be taken as absolutely correct. Also, the
linear curve fitting of the velocity data might be a bit arbi-
trary and the derivative of the curve fit appears in Equation
7. Thus the difference between the detonation velocity meas-
ured by Dremin, et al and by MacDougall, et al (Columns 7 and
11) is small,yet it has its bearing on the computation of the
detonation pressure by the envelope method (Columns 8 and 12).
It -might be worth noting that Dremin, et al, state that
"the Hugoniot curve in the vicinity of the C-J point may be ap-

proximated, independently of the equation of state of the ex-
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~
plosion products, by the power function p v = A in which A and

a, are constants, For TNTm «~ 2.8:

for RDX it is m2> 2.6." Thus

they must have made the same mistake that Zel'decvich and Kompaneets

had made and that this author had made as well in an earlier version

of this section.

The mistake in the earlier version of this sec-

tion was caught by Dr. L. Rudlin and Mr. M. Lurzky of the U. S.

Naval Ordnance Laboratory {(White Oak, Md.) who kindly advised

this author of its presence. The
accompanying skecth serves to cla-
rify the point. For a given P,
and V, (or J, = loading density)
the energy equ@tion (Eq. 3) de-
fines a curve in the p , v plane
which is called the Hugoniot
curve. For the same B, , V¥ there

is one Rayleigh line which is tan-

gent to the Hugoniot curve and the

]

ct

poi of tangency is the C-J point.

-

1
As Vy varies a family of Hugoniot
curves is obtained. The corre-

sponding C-J points will define a

new curve which can be called the locus of the C-J points.

«— €T PoinTg

LoOwWS OF C-T POINTS

. HUGOW'DT CURVES

ENVELOPE COF Tue
ICAYLEIGH
LINES

RAYLEIGH
LINGS —

>V

At the

same time the Rayleigh lines will generate by envelope a third

curve which has already been called the envelope.

In general

there is no reason to expect that for a given explosive and p,

these three curves coincide. They would coincide if the Hugoniot

curves collapsed into one single curve for all v§'s

However,
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there is no way of using Dremin's measurements or any measure-
ments to conclude that the Hugoniot curves indeed collapse into
a single one without explicit consideration of the energy equa-
tion and in particular of the terms e =e( p, ) and 9°= y“(;,v- )
which in turn require the knowledge of the caloric equation of
state of the products and of the chemistry of the process. The
measurements of Dremin, et al, are sufficient to determine the
locus of the C-J points (if one assumes that the pressure they
measured is the C-J pressure). 1Indeed, having p=hb (Vs ) and
U=v (%), Equation 4 defines & = & (V) so that a p =p (V)
relation can be obtained. Also Dremin's U=V (¢5) is sufficient
to determine the envelope of the Rayleigh lines as it has already
been seen (these two curves would have coincided if f =p ( Vo )
calculated by the envelope approach had coincided exactly with
the one measured by Dremin, et al). However, the data of Dremin
cannot be used in the Hugoniot tangency condition

( 7ﬁ ) - b-bo
X g’P.'y; %-v (28)

to obtain some Hugoniot curve as they seem to have done. Indeed
they state that their measurements show that q%h,is approximately
constant and equal to 3.8 for TNT for all y,'s (actually it is
between 3.79 and 3.95). Then they define the "Hugoniot" index

"
-

2
=|q

(29)

From mass conservation it then follows that
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w . "
v o~ (30)
At this point they must have eliminated ¢ from Equation 28 thus

obtaining

m p
] R

dv- v (31)
Upon integration, this yields the equation of what they call

the "Hugoniot line"

~m,
b.AV (32)

The error here is in having used Equation 28 for varying g, in
the attempt to find some Hugoniot curve. This equation expresses

the original Chapmann condition of tangency to the Hugoniot curve

for a given h., Vo . Actually what Dremin, et al, have done is
to find another envelope (different from the envclope of the
Rayleigh lines). This envelope satisfies the condition that

the tangent tc each of its points goes through the point p , ¢
and is such that at the tangency point U=nlp /(Mm+1), However,
the detonation velocity associated with this envelope is no
longer of the form U= a-tlr/\la . Now the detonation velocity is

(from Equation 4 using Equations 30 and 32)

A (m+'3mw) Ya

U= ~ ("-')J (33)
m Y%

which further shows that if m = 3 then Equation 30 gives vrg 30:,/4

and Equation 33 gives U e ‘/h; and one finds again the Zel'dovich-

Kompaneets case,
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It is by now clear that the various methods to calculate

the detonation variables which have been discussed so far, are

not equivalent to the C-J method and cannot be related to it in

any obvious manner,

they compare with the various C-J models.

It is nevertheless interesting to see how

In the next section

a quick review of the C-J models is given with the purpose of

comparing the models when possible, to the Rayleigh lines envelope

method.,

2.4 Review of C-J Models

Chapman (1889, sketch 1) sug-
gested that the actual detonation
velocity is the smallest of the ve-
locities satisfying Equations 1, 2
and 3. For a given e:e(p,v) ’y.sf.{’,r)
the energy egquation defines a curve
in the P, + plane called the
Hugoniot curve. For a given B .,V
and for various U , Equation 4
defines a family of straight lines,
in the same plane, called Rayleigh
lines. The minimum U satisfying
the conservation equations is that

for which the corresponding Ray-

leigh line is tangent to the Hugoniot

gency is called the Chapman-Jouget (C - J) point.

FEOBEN HUGONIOT CurRVE
(?0: CONST CALCULATED
Frof ComMPLITE
COMBUSTIO N)
FROZIEN (-
PINT
mininon U \5\\\
RAYLEIGH
LINE - \
»
| SV
SKETCH | 0,
—y
curve. The point of tan-

Jouguet cal-

culated the detonation velocity of several gaseous mixtures,
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using the minimum detonation velocity condition (C-J condition)
and computing ?oiknrthe case of complete combustion of the re-
actants (no dissociation). The Hugoniot curve is then for

y°= constant and it is called a frozen Hugoniot curve since
it corresponds to different solutions of the energy equation for
the fixed complete composition for which ?. is evaluated. The
detonation velocities calculated by Jouguet were in good agree-
ment with the experimentally measured ones. Since dissociation
is known to occur and to influence appreciably the calculation
of detonation velocities, the explanation for the good results
obtained by Jouguet is due to the fact that he used "specific
heats calculated from measurements made by exploding gases in
closed vessels. 1In such experiments dissociation certainly oc-
curred, but in analyzing the results of such experiments no dis-
sociation was allowed for18 Thus dissociation was included with-
out realizing it. It can be shown9 that in this model, the tan-

gency condition is equivalent to setting U=u+a, which means

+“~

that at the distance from the shock front at whic

e

+ha O T ~An.
1 LD X5 N w A SR

-

dition is verified, the velocity is sonic with respect to the
front and the speed of sound to be considered is the frozen speed
of sound (02 ). It is instructive to apply this C-J approach to
a specific problem. Thus consider the case of the gaseous mix-

ture (2H2 + 02) + 4H The products of complete combustion

20
are 2H20 + 4H2. The heat released by the complete combustion

is ?Q= 10.82 1oloerg/g, The equations to be used are

v _ h Ve - .== Ejj&' Ve -v)
F-1) (%-1) ! e (%

(34)
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t -
v-o. F Po (35)
e -V

b p-bo (36)

Vo -V~
The first of the above equations is the energy equation (where

the reference temperature is OOK). The products are assumed to
be thermally perfect., 1If the products are assumed to be also
calorically perfect then ?=Y. Otherwise Y, = 1.4, Y = 1.24
(expecting the products to be at approximately 3OOOOK) and ;=

1.3 where an average Yy 1is taken for the computation of the in-
ternal energy of the reaction product to avoid the integration,
from the reference to the final temperature, which otherwise
would be necessary. The second equation is again Equation 4

and the third equation is the C-J tangency condition written in
its formU = ue¢ 04 and after having made use of mass and momen-
tum conservation equations., For a given P. . Yo the above three
equations contain three unknowns ﬁ , v, U so that, in general the
detonation velocity thus calculated will be a function of Vg

(for a fixed Po ). The dependence U= V(fo) can be estimated
from the following considerations., If one neglects Po with re-

spect to p (P. can be expected to be about 6% of p ) one finds

v = Yv;/ (Y+')

(37)

P:

% Y-l 2 (¥+XT-1) (38)

_
U [[Be  ] ey [LEEDT] 1T (39)

Y-l 2(1+X ¥-1)
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If one further neglects K Vs /(¥ -/ ) with respect to 9oone
finds that U is independent of B and Y . For the mixture
under consideration (and assuming p = 1 At. T, = 293%),

Bt /(Y%-]) = .94 10'%rqg/g which is about 8.6% of ¢° (Typ-
ically PVe /( ¥o-1) is about 10% of 9’0 thus neglecting it brings
about approximately a 10% error in p and a 5% in U ). For prac-

tical calculations Y 1is often used instead of ¥ thus finding 2

U= YV'O/((-O'O) (40)

p U'ytro{'ﬂ»a) ° 2}”{7")/"" (41)

U = L' 2¢° (4~ o)]y‘ (42)

And in so doing the term (2¥-(y-1))/2(¥+s Y(F-/) = 1.62 is re-
placed by 1/2(¥-1) = 2.08 and another 22% error is introduced.,
Both the detonation variables calculated by Equations 37, 38, 39
and those calculated by Equations 40, 41 and 42 are given in
Table III and the differences cannot be considered negligible,
The same variables calculated by other versions of the C-T
models will presently be considered,

The above equations are simple enough so that one can il-
lustrate the difference between the detonation pressure and spe-
cific volume calculated by this first C-J model and those cal-
culated by the envelope method for the case in which the same
detonation velocity is used in both cases (U=a= constant).

Thus comparing Equation 12 with Equation 37 one sees that the

detonation specific volume calculated by the envelope method is
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( ¥+ )/zy times smaller than that given by this C-J model while
comparing ;Equation 13 with Equation 38 one sees that the detona-
tion pressure is (¥+/ )/2 times larger. Since for gaseous ex-
plosives ) <« 1,25, the envelope method will give a 10% smaller ¥
and a 12.5% larger P than this C-J model. A more elaborate
C-J model, which will be examined shortly, will tend to give
lower ¢ and higher p thus further reduéing the difference
between the twoc methods.

Lewis (1930, sketch 2) recalculated detonation velocities
of gaseous mixtures using y°= const but corresponding to its
equilibrium value. Since the composition is still constant along
the Hugoniot line (even though now it is the equilibrium com-
position rather than the complete combustion composition), the
tangency condition is still p

exactly equivalent to setting
FROZEN HUGONIOT CORVE

( ¢°: onst  catcuiated
the way Lewis applied the C-J FORL &QUILIGR UM

\ ConPoS 110N )

U-= u+q‘. In fact, this is

e
condition when he set a = Yb/e

wye

which shows that @ is the

frozen speed of sound in the FrRoleN C-T

PoinT
detonation products. Lewis

used correct specific heats

Mivinvm U
and his detonation veloci- “YLjL_C“ —
L
ties again agreed well with
the measured ones3 (except
SKETCH2 Po, Vo

for highly diluted mix-

tures).
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A model for the structure b
of the detonation wave was then Fi/
suggested by Zel'dovich, von

Neumann and Doring (ZND Model

1940, Sketch 3)., According to Meo | — FROZEN C-T PonT
this model a detonation wave is
actually made up of an adiabatic
shock, followed by a deflagration
then followed by a rarefaction. Mivinum U
RAYLEIGH LINE

The deflagration is stationary

with respect to the adiabatic

o SKETCH 3
shock front, Within the deflag- -

ration zone the reaction proceeds controlled by chemical kinetics
and various states of completion are identified by the quantity m
which takes the value of 1 at that distance from the front at
which the reaction is complete (C-J plane). 1In the formulation

of von Neumannlo, within the deflagration zone, "a unit mass con-
tains m, parts of burnt gas, #-1 part of intact explosive." One
is still free to choose that the M parts of burnt gas have reached
a complete combustion state and have given out the complete com-
bustion heat of reaction (no dissociation) or that they have
reached their equilibrium state and given out the corresponding
equilibrium heat of reaction. Gordon4 calculated the intermediate
and the final frozen Hugoniot curve for H2—Air and using (prob-
ably) a succession of equilibrium states for the M parts of
burnt gas, The important thing is that this study of the struc-

ture of the detonation wave did not alter the computation of the

quantites at the C-J point. In this study, the presence of the
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rarefaction wave is not considered. 1Instead it is stated that
the combustion goes to completion at some distance behind the front.
The question of whether com- P

bustion goes to completion and what
EQUILI1BRIWWH HUGOwWIOT CURW

it is meant by it was investigated T (¢%= ¢(p,) )

by Brinkleyl% Kirkwood and Woodlz,

\ FROZEN HUOMOT

CueVE
i// (¢°= comsr
CALLLULAYED FON
EQUILIGRIVH

COnpPo s rwﬂ)

(1953, Sketch 4) by studying the
interaction between the deflagration

and the rarefaction waves. By im- /ﬂ
EQUILI8RWUN

posing the condition that the char- c-T POINT
FROZEN
c-J PoiNT

'

acteristics from the two regions

RAYLEIGH

should join smoothly, Kirkwood and LINES e

Wood concluded that there must ex-

ist a plane on which chemical equi-

SKETCH 4 R, Y%

librium is reached and that on this
plane the proper condition to apply isU =14+a4 (forzen C-J point),
thus confirming the consistancy of Lewis calculations. However,
vvvvv subsequently changed his previous conclusion and stated that
on the plane on which chemical equilibrium is reached the proper
condition to apply is V =wu+@a (equilibrium C-J point). Indeed
it would appear9 that if one uses the equilibrium Hugoniot curve,
the original tangency condition is equibalent to setting v =u+a,
where ﬁgis the equilibrium speed of sound. If this model is correct,
the calculations of Lewis are not accurate, From the examination

of Sketch 4, it would appear that the various definitions of the

C-J condition should lead to practically identical shock velocities

but may lead to quite different detonation pressures and densities,

This is due to the fact that the slope of the Rayleigh line should
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not be modified appreciably (and the detonation velocity is pro-
portional to its square root), but the tangency point may shift
considerably (see Sketch 4)., This author then decided to eval-
uate the difference between the various approaches for the gas-
cous mixture: (2H, + 0,) + 4H, ( p =1 at.; T = 293°K).

This is one of the mixtures studied by Lewis and Friauf (see
Table I) and the detonation velocity calculated by them ( U =
3627 m/sec; P = 15,97 At,) was somewhat higher than the
measured one (3527 m/sec). Lewis and Friauf, as previously
stated (Sketch 2), used, as C-J condition, the tangency condition
to the frozen, equilibrium Hugoniot curve. Since the condition
of tangency to the equilibrium Hugoniot curve should vield a
somewhat lower detonation velocity (Sketch 4), it was hoped that
the detonation velocity thus calculated might have been in better
agreement with the experimental one. The products considered
were the same as those considered by Lewis and Friauf (H20 , H2,

02, OH, H). The computation proceeds as follows. The equilib-

r: L el e e e e N - R e T ] (

iUl CoOmpo51itilon €guatiins 3.2
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n
0
(e
d
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ot
Q
thl
D
-’-
3
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1

with the energy conservation equation (Equation 3 and the equa-

tion of state of the products (perfect gases) for a specific

value of P, This determines Vv, € , ?’, T and the equilibrium
composition, and obtains one point of the Hugoniot equilibrium

curve (see Fig. 2). The process is repeated for several values

of p thus defining the Hugoniot equilibrium curve. For a given
point of this curve the composition is frozen ( ?‘ = const) and
corresponding frozen, equilibrium Hugoniot curves are calculated.
Two tangents can then be drawn: 1) to the equilibrium Hugoniot
curve, thus obtaining p = 17 At., ¥ = 2100 Cm3/g. UV = 3680 m/sec;

2) to that frozen Hugoniot line whose tangency point is on the
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equilibrium Hugoniot line thus obtaining p = 16 At., v = 2210
cmB/g, U = 3699 m/sec (Lewis and Friauf reported ¢ = 15,97 At.,
vV = 2155 Cm3/g, U = 3627 m/sec). These results are summarized
in Table III.
On the basis of this computation one can make the following
observations:

a) The tangency to the frozen Hugoniot curve (for
equilibrium composition) should have yielded ex-
actly the results of Lewis and Friauf but did not
do so. In the present calculation, JANAF (1960)
values for the specific heats of the various sub-
stances and for the equilibrium constants were
used and computations made on a digital computer.,
Experience shows that this kind of equilibrium
computations are sensitive to the above quan-
tities which in turn have been somewhat im-
proved over the years. Thus the difference
could be accounted for by just the differences
in the thermodynamic data used. Hence, the per-
cent concentrations of OH and H reported by
Lewis and Friauf are 1.2 and 3.0 while, with
their p and T , this author obtains 0.5 and
2.94 respectively, thus indicating some dif-
ference in the equilibrium constants, Notice
that the amount of dissociation is very small.,

b) The two definitions of the C-J point yielded
detonation velocities differences of only

«516% but detonation pressure differences of
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5.8% and detonation specific volume differences

. of 5.2%. Notice that these differences are for

a case in which dissociation is very small, Had

the dissociation been higher, greater differences
would have been found. The influence of the dis-
sociation is shown by its influence on ?o (see
Fig. 3). 1In spite of the small dissociation the
changes of ?‘ are not negligible,

c) Measurements of shock velocities will not resolve
the problem of which of the two definitions is more
accurate,

d) The fact that neither of the two approaches has
yielded the measured detonation velocity sug-

. gests that something is still missing in the C-J
model for the detonation process even for the
simpler case of gaseous mixtures.

Wanting to look at the detonation process within the frame-
work of the C-J model, one could formulate the following thoughts.
For the mixture under consideration, one must assume that equi-
librium was not reached and that some of the mixture had not re-
acted, thus casting some doubts on the assertion that an equi-
librium composition is reached before the starting of the rare-
fraction wave. It could be a case of what are called "path-
ological" detonations whereby the Hugoniot curves representing
the intermediate stages of the deflagration (see Sketch 3) in-
tersect each other. In this case, according to von Neuﬁannlo,

‘. they should form an envelope and the proper C-J condition is
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not that of tangency to the M. = 1 Hugoniot curve, but rather
that of tangency to this envelope. But then, still according
to von Neumann, the "pathological" detonation velocity should
be higher than the normal one while the measured one is actual-
ly lower. It could also be that the current model of the nor-
mal detonation process is too strict. In summary this model
calls for an adiabatic shock front followed by a deflagration
which is stationary with respect to the shock front. The de-
flagration merges with the rarefaction wave and at the merging
point (C-J point) chemical equilibrium is reached and 1f==u4-ﬂ¢
is satisfied (the condition U = u+a, is here equivalent to
the condition of tangency to the Hugoniot equilibrium curveg).
It would seem that, for the C-J point to be stable, the condi-
tion should be U = u+a , Where a 1is the actual speed of
sound which is greater than @, and smaller than a4 (the dif-
ference between @&, and al being as high as 10%). It would
seem that, if at the C-J point UV = U+ Q ., then a rarefaction
wave would overtake the front since it would move after it at
the speed W + & which is greater than u+4Q, . One would
then notice that the condition U = U+a is sufficient to de-
termine the detonation problem. It does not require any other
restraint like that of chemical equilibrium. There seems to be
no need of distinguishing between deflagration and rarefaction
waves. There would be a stationary reactive region (up to the
point at which U = ura ) followed by a nonstationary one,

For a given mixture, the existence of a stable detonation ve-

locity would simply imply that at some distance after the front
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the condition U = u+a is met. 1In principle, starting from a point
after the adiabatic shock front one would integrate a set of lst
order O.D.E. representing the reaction kinetics together with the
Rankine-Hugoniot equations (Equations 1, 2, 3) and the equation

of state to calculate composition and all other variables as
functions of the distance from the shock front. One would have

to start with guessing U (so that the initial conditions for

the 0.D. equations became known) and calculate W and & at each
distance from the front. If the condition U = u+¢a is nowhere
satisfied one would change U and repeat the process (for the

H2, O2 system such calculations might be possible since some in-
formation is available about the corresponding reaction mechanism
and reaction rate constants). This C-J model does not lead to a
meaningful graphical description in the p ,v- plant since the

C-J point would not in general coincide with any tangency con-
dition. It would be that point of the Rayleigh line which sat-
isfied the energy equation but at which the Rayleigh line is not
necessarily tangent to either frozen of equilibrium Hugoniot

curves, This model could be tested by studying the effects of
additives on the detonation velocity of a mixture whose products

do not seem to reach equilibrium composition (such as (2H2+02)+
4H2). The additives would change the relative concentration of
the products, thus altering the conditions under which U =wu+a
and consequently the value of the detonation velocity (in general
the detonation velocity of TNT, with inert additives, is found to
be equal to the detonation velocity of TNT without additives but

at a correspondingly lower loading density). However, Dremin re-
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ports that the addition of Sio2 (15% by weight) increases the
detonation velocity quite strongly at high loading density).

The above computations would be complex and in light of the
more recent knowledge of the structure of the detonation front
perhaps not justifiable.

One can thus conclude this section by simply noticing that
there are various modifications of the basic C-J model and that
they lead to appreciably different results., None of them can be
defined consistent with recent knowledge of the detonation front
structure and all of them give reasonable estimates of the de-
tonation variables, The Rayleigh line envelope method seems to
give just as good an estimate of these variables and for its
simplicity might be of practical use, The results of Table III

support this conclusion,

2.5 On the Equation 7f State ¢f the Products ©of Solid Explosives

The problem of the equation of state of the products of
solid explosives is still largely unresolved. In "conventional"
studies of the detonation of solid explosives, one assumes some
equation of state (the ones this author is aware of can all be
related to the Van Der Waal's equation) for the products which
contains some arbitrary constants. The complete set of equations
with some version of the C-J model ( 9’ is taken to be constant
almost universally, i,e., frozen C-J models) is then solved for
various loading densities. The detonation velocity U =U(w )
thus calculated is compared with the measured one and the arbi-
trary constants are so adjusted as to bring about agreement be-

tween the calculated and the measured U =U(v,). In the "direct"
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approach on the contrary, one uses all the information that is
available and tries to learn as much as possible about the equa-
tion of state with a minimum number of assumptions. Thus, the
envelope method shows that ¥ /Jp = K where K is very close to
being constant over the range of interest of VY 's( K = .7i .01
for TNT and .695 i .0075 for RDX, see Table II). One might pre-
fer to take V/Vp = K as an experimental result obtained by
Dremin, et al, (in this case K = ,736 for TNT and .723 for RDX).

Either way, one can write the energy equation as follows
° 1-K
c‘eo‘r = -E(V‘o-lr)a Pr(ﬁ) (43)

Next two major assumptions are made. The first one is that the

reaction products are in chemical equilibrium in which case

7

- T(2) -k

The second one is that 9,+(f° = const as Vp varies. Both as-

sumptions are continuously made in the trade, but it is anything

Hh

&

'
3
1
¥
;
)
3
D

but evident t
ventional approach these assumptions are made on top of other
assumptions which are here not necessary. The constancy of r‘
will briefly be discussed later., With these two assumptions,
one can eliminate € Dbetween Equations 43 and 44 (where e and’

are seen as functions of v and T ) thus obtaining

W _ 1—K Vq l+K)
T;“Tl" (27 Wy b (45)

Notice that no restriction has been imposed on e =e (¢, T). The

general solution of this first order linear P.D.E. for p =p(v,
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L]
can be written in several equivalent forms among which
=3 1+ K

R . -k =
F| T v , vV “p o (46)

Where £ is any arbitrary function of its arguments, The equa-
tion of state of the products must satisfy the condition F-o0
which was derived from experimental data and the above two as-
sumptions., Here one has a good example of the advantages that
the direct method offers in some problems. Using the experimental
fact that f/d} = constant, an expression was derived that the
equation of state must satisfy thus getting the most out of the
experimental data (Maximum Information). It Wwas necessary to
solve a simple P.D.E. versus the complications of conventional
calculations (Mathematical Simplification). This was possible
since only two of the five equations describing the problems

were solved (Set Splitting). It was not necessary to require the
validity of the C-J model and other assumptions which usually are

made in the conventional approach (Assumption Splitting)., Still

Q"

two basic assumptions were made,

P22

1

checked separately by additional experimental data. One could
now study Equation 46 for various T Qr(';) or for the various
equations of state which have been proposed and experience shows
that such a study would be fruitful (Maximum Information). A
similar study was performed for the problem of steady combustion
of the LOX/ethanol system and the results are given in Section
3.6. Going back to Equation 46, the function £ (and therefore
the equation of state) cannot be determined without further ex-

perimental data or assumptions. The only condition available
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is that F be such as to give the V=v¢(Ve) and the pP=p(h),
determined using 1% =V (Vo) and given by Equations 20 and 21
respectively, or the experimentally determined ¥ =V (Ve ) and
P=P (Vo) given in Table II. Thus, choosing a particular form

for F , one could set

1+ K iI-k
""?r’-’f v TR (47)

where ,f is an arbitrary function of its argument. The left
hand side of Equation 47 is a known function of g (through
Equations 20 and 21). 1f T = T(fo ) is measured, one can de-
termine # » and therefore the missing equation of state. Sim-
ilarly for any selected T-T(vw ), a function ¢ can be found
which satisfies Equation 47. Which ultimately shows that the
experimental knowledge of U =U (g ); p =p (Vo ); & =v ( 3
% =% (VY% ) give no information at all about T =T ( Ve ). This

is because U, b , ¥ , . are essentially dynamic parameters re-
lated to the energy equation (Equation 43) only through the prod-
uct pV¥ . As far as this energy cquation is concerned, the knowl-
edge of U, ﬁ » UV, W 1is used only in as far as it determines

P =b (V) and the function ;b =P (Y 7) cannot be completely de-
termined using only one function of the form f =k (V). One can
reach the same conclusion also by the following reasoning. De-
tonation pressure, density and particle velocity can be calcu-
lated immediately without using any equation of state for the
explosion products is the envelope method is assumed to be cor-
rect and if the detonation velocity versus the loading density

is given. Conversely, this implies that the same detonation
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pressure, density and particle velocity are calculated with any
form of the equation of state when the same detonation veolcity
versus loading density is used. The envelope method gives re-
sults which are very close to those obtained by the various C-J
models to the point that many authors have taken the two methods
to be equivalent. Thus, if the validity of some C-J models were
assumed (instead of the validity of the envelope method) the con-
clusion would be reached that slightly different detonation pres-
sure, density and particle velocity are calculated by completely
different equations of state when the same detonation velocity

is used. This explains why similar p =p (Ve), p=P (¥), and x=u(v%)
and completely different T = T (%) have been calculated by various
authors using similar U=U (%) and different equations of state
(the calculated temperature is a function of the assumed equation
of state). Thus, according to some authorsls’16 T increases with
‘L (A v and w increase) while according to othersl4’l7’18'7 de-
creases with‘L . The problem of whether T increases or decreases
is related to the problem of whether y'can be taken to be con-
stant with‘ﬁ . If the reaction products behave qualitatively

as equilibrium perfect gases and if both p and T increase with R
then chances are that the assumption ?2=constant is not a bad
one. This is so because 9' would increase with p and decrease
with T due to the fact that dissociation decreases with p and

increases with T .

2.6 Conclusions

The concept of using experimental data to solve basic equa-
tions with a minimum number of assumptions in order to get max-

imum information out of the experimental data has been applied
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to the detonation problem within the frame work of steady, one
dimensional, laminar detonation front. It has been shown that
the knowledge of the detonation velocity versus loading density
is sufficient to determine detonation pressure, density and par-
ticle velocity using only mass and momentum conservation equa-
tions and the envelope assumption. The envelope assumption has
been shown to lead to slighly different results than those yielded
by the various versions of the C-J model. The envelope method
gives detonation pressures some 10% higher, and detonation spe-
cific volumes some 10% lower than the simplest of the C-J models.
The difference tends to decrease for more complicated C-J models
and, in any case, the envelope method is simpler than the C-J
models and leads to predictions of the detonation variables which
are in reasonably good agreement with experimental results for
both gaseous and solid explosives, In the process of comparing
the envelope method with the various C-J models, the conclusion
has been reached that the C~J theory seems to have never achieved
a state of self consistancy. After having solved mass and momen-
tum conservation equations, with the envelope assumption, for de-
tonation pressure, density and particle velocity, the energy con-
servation equation was considered with the purpose of gaining
somé information about the equation of state of the products of
solid explosives. An expression was derived which would give

the equation of state if the detonation temperature were measured.
For that it was found necessary to assume that the energy re-
leased is independent of the loading density and that the prod-

ucts are in chemical equilibrium. The reason for which the de-




-

tonation temperature predicted by the various equations of state
is so different while all the other detonation variables are very

similar, was then explained.
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3.0 STEADY COMBUSTION OF THE LOX/ETHANOL SYSTEM

3.1 Introduction to the "Direct" Method of Studying Liquid
Propellants Steady Combustion

In this section, a simple model of steady-state combustion
is first considered for the purpose of pointing out the basic
differences between the "conventional" and the "direct" ap-
proaches. Only generalities are given in this section while
specifics will be discussed in following sections. Thus, the
oxidizer is assumed to vaporize much faster than the fuel and
that part of the engine is considered where only liquid fuel
drops exist. It is further assumed that all drops have initial-
ly the same velocity and radius and that there are no collisions,

break-ups or nucleations. The following equations can then be

written
Pu = = ((We -Wop) ¢ Wog (51)
Pl th-b = = (Wpug = Yo Ung )+ wop tng (52)
(b 2] 1 oK) (1 )by ] 5
T=T( r,p,X:) (54)
h=h(p,r, %) (55)
3'( ( PT, X o2 ,Wo ,Wog ,We )=0 Caysz,..T

Wop (56)
g

Ve -
red $m?

2 1% - 3 E{‘ ?:)"““P/(“"‘-)

“ k- s AT

(57)
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Where p 1w, b, 7: h are the combustion gas density, velocity,

pressure, temperature, and latent enthalpy respectively ( k 1is
the value of p at the injector end). Wp (W) is the local liquid
fuel (oxidizer) flux and Wor (w.’) is its value at 2=¢ (injector
end). %g (I’) is the liquid fuel (oxidizer) drop velocity, ug. (%, )
is the injection velocity and z9; CRW‘) is its component in the

o 0
X direction, A; (A’) and ‘l‘, (h’ ) are the vaporization energy and
the enthalpy of formation respectively. X} are the number of
moles of product ¢ per mole of burned fuel. 4 is the local drop
radius, f‘- is the specific gravity of the liquid fuel. Sy and,&
are the drag coefficient and the Reynold's number respectively
and R,‘% %, ? are coefficients to be defined later. Equations 51,
52, and 53 express mass, momentum and energy conservation, respec-
tively. Equation 54 is the thermal equation of state of the com-
bustion products, and Equation 55 is the caloric equation of state.
gi stands for a set of, say, I equations which are necessary to
relate the amount of vaporized propellants to the variables of
the gas (they are as many as the products of which the gas is assumed
to be made up). Equation 56 states the conservation of the drop
number. Equations 57 and 58 are possible forms of the drag and
vaporization equations for individual drops. If the conditions at

the injector end and basic thermodynamic data are known, these 8 + I

equations contain the following 8 4 I unknowns:

Pl u) Po TI") wF‘ u')taxl,z..

J O S




59

In the “conventional®” approach one would sclve numcrically
the above system of algebraic-differential equations. This task
in itself would not be easy due to the fact that the above equa-
tions are strongly and sensitively coupled. The equations 3{
which relate some of the gas properties to the amount oflpro—
pellant vaporized are highly nonlinear algebraic equations even
for the simplest of all possible assumptions, i.e., the assumptioﬁ
of instantaneous chemical equilibrium of the reaction products.
After having solved the equations, the results would be compared
with some experimental data by comparing, for example, the cal-
culated loss of static pressure versus a2 with the measured one,

If the comparison is not completely satisfactory, one would have
to decide which of the main assumptions that went into this model

need to be improved. The main assumptions are:

a) Assumption of chemical equilibrium
(or equivalent assumption) going into
the definition of the actual 3?.

b) Assumption of uniform initial drop radius
and velocity.

c) The droplet drag equation.

d) The droplet vaporization equation.

It is seen that, having several important assumptions, it might
be difficult to select the weakest (there are other assumptions
implied by Equations 51 through 58, but they are not as conse-

quential as those above and they will be listed and discussed

in Section 3.2 and 3.3.2).
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In the "direct" approach one would observe that the first
5 + I equations could be solved if any two of the 7 + I unknowns
appearing in them were given, in which case the last three equa-
tions could be dropped. Notice that the knowledge of two param-

eters allows the elimination of three equations (set splitting)

since Equation 56 contains the drop radius which is used in the
last two equations but not in the first 5 + I. Thus, one could
specify ﬁﬁ/u’which is contained within known limits in most of
the engine and use directly measurements of static pressure loss
in some experimental engine (Parametrization),. He can then solve
only the first 5 + I equations (less equations to solve than in
the "conventional" approach Mathematical Specification). After
having solved his equations he would know all the gas parameters
(Experimental Data Information Optimization) and could check the
validity of his solution by further measurements, say, of the
gas velocity. Should the calculated and measured particle ve-
locity be in disagreement, one would have to decide which of the

main assumptions, which went into the first 5 + I equations, need

to be improved. But only two of the four main assumptions of the
complete set of equations are necessary for the first five equa-
tions (assumptions (a) and (b) ). Thus one can verify the valid-
ity of these first two assumptions even before considering the

remaining two (Assumption Splitting).

e —
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Actually one can go one step further and argue that the

solution of the first 5 + I equations does not change appreciably

if the assumption of uniform initial drop radius and velocity is

removed to allow for a distribution of initial drop radii. Then

the validity of the first 5 + I equations is primarily related to

the validity of the assumption of chemical equilibrium of com-

bustion products, Thus, if a distribution function for the drop

radii is introduced ( {=€(=r) ) the following steady-state equa-

tions can be written9

= "Ml
pu:-/ &4W1‘R,meJ~ + Woy

!Mu

° e 2~ Rpax
S T T e e

x ,'!M\\ pun : ° Jx
pe(h}) / [ / pavd Eudr[pemt RN P
0 [~ (-] ° 0
+ Wog (/\o,-o- 1"_{1 + "l)

T= T( bt X“)
h='h( hf,a)(()

2% ( PT, )Ll,“.r ) hGP‘,M%‘, W%J)='0 ¢as,2... T

o%(g#) * L u f) =0
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g 3 S L., .
ATV Sl [« up/(u. U )
U (2.&.) k '4?

The first 5 + I of these equations can be written as the previous
ones if one sets

= ,b'(-/

We = W +/ / P,_41r«.z£.fc/tvl~.
o [#]

F, "

x _
- %,1(,,,4-/ / p v 'zz[R(u,-u)-r !i-] fole dm /."‘l
o /e

A+ r. . wop(Aop-r .,h )+

x (u
//&4-77’t[ﬂ(/1 + £ */r )+2F"r.]£-lt.4z}/w

Where '1_2, and 7"‘ are then average liquid drop velocities soc de-
fined as to give the same local momentum and energy contributions
to the gas that the actual drop do. In general ’_IZ‘. will be dif-

’

ferent from %, . One can expect %, , %, to be equal to the
Ft ’ ;l

actual velocities of some drop groups at any given distance from

the injector. Thus, the ratios Ys/w and %/ will fall within

the limit of zero to one in most of the engine, since in most of

the engine the velocity of all drop groups will be less than or

equal to the gas velocity. Thus, if the solution of the first 5 + I

e [ TS
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equations does not change appreciably for 0 = i,; /w=| and oeﬁ&/uﬂ
one can say that the gas variables calculated by those equations
are valid independently of the actual drop distribution function,
Indeed it turns out that the solution is completely insensitive
to the value of i’t/ w and not too sensitive to that of ﬂ-p, /w .
In conclusion then, the "direct" method will give a solution for
the gas variables which is independent of the actual drop drag
and vaporization models and distribution function and dependent
primarily on the assumption of chemical equilibrium of the re-
action products., Thus this assumption can be verified separately.
After having verified this assumption and calculated the gas
variables (Sec. 3.2), one can then proceed to studying drop drag
and vaporization models and distribution functions (Sec. 3.6)
knowing the solution that they must be able to explain and fit.
There is at least one more advantage that the "direct" method
offers. Many mathematical and physical properties of the steady~
state liquid propeliant combustion surface while studying the

solution of the incomplete set of equations {the first 5 + I

equations)., This will be evidenced by the discussions appearing
in Sections 3.3, 3.4 and 3.5 (Maximum Information). Indeed hav-
ing an accurate solution of the incomplete set of equations is
often more valuable than having an inaccurate one of the com-
plete set., With the incomplete solution available more real-
istic assumptions can be made for the study of the complete set
than would have been possible when no information at all was
available.

3.2 Steady State Equations and Their Solution

In this section, the actual steady-state equations which
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were solved are given together with their assumptions.. The method
by which they were solved is then briefly explained and the re-
sults of three specific applications are presented. Discussion
of the assumptions, equations and results will be undertaken in
the next section.

The following assumptions are made:

1) The oxidizer is oxygen and the fuel is made up
of carbon, oxygen and hydrogen,

2) The combustion is steady.

3) At the station of interest the flow is one-
dimensional (uniform through the cross-section)
and with no recirculation.

4) The liquid propellants are at their wet bulb
temperatures (but their boiling temperatures
are actually used) and their vaporization is
distributed (actually only the region in which
liquid fuel is present is studied in all but

Ann anc~+aiAan)
OntC SCCTiON) .«

5) Gaseous fuel and oxidizer react instantaneously
to give equilibrium reaction products.

6) A single average velocity for the liquid phases
( i& ) is used.

7) Heat transfer (to the chamber walls and within
the gas) and friction effects (to the chamber
walls and within the gas) are neglected.

Under the above assumptions the following equations can be

written (See Appendix A):
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pu = WO;:"WF +Wa¢ - Wy (61)
PUT = Romb o+ v Uep = W Ty + Woy ey — Wy T (62)
2 ' t
prfhe 3] (el ) -drd, () ¢ (K)o fm B ] - o3

o ° 1
T W [ - Mt (T-7 )* (H'O)’/m’+ _%e} N
+ W, [S(Toy=Tay) = by + &, (Tog =T+ (‘4 Jo /My + Usd] —
- wg [ “ Mg (Tp-T)s (4 )l/m/"'uc]
64)
b=fy£T/’mcm=f’QT/(m' (
CaH, O+ 20, > X, 04 + X2 €0 +X3 (0. +Xe0 + X5 + Xc Hp# Yo Hy04XHH 6 42)
2 =M (w°p‘wﬂ)/’m'¢ (*F"wﬁ) (65)
Mym = fmF+ ZMg = Ra+4+16 (C+2 2)
(66)
8
y= 2. X (67)
t=y
X, + Xy = (68)
x‘+2X‘+2X7f‘X8= e— (69)
x=+ )(2+2X3+X++2X,+X.,=C+2Z PR
(WAYY)
- - ¥ 4
Xa [P10y2]  |.3¢25 10
A (5 J ]+ B - emee 4o 50 (71)
i § 10
Ly X‘V' (E_’i) ]4-'_2_“1__ 3.201 20 LH SH (72)
85 | -
«‘3750 xs ] 0,185 8 50 = F0,+4iH, ZoH  (73)
324/ 100
‘e. X3 b - A -

h= 4080 10 { i[/c,.‘_('r)JT+(H:,),;Jf//m,m (76)
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As in the previous section, Equation 61 expresses the mass
conservation between the injector (where W, are the injection
flow rates, of fuel and oxidizer rcspectivély, divided by the
engine cross-section, i.e., injection fluxes) and any station
at which the fluxes of liquid fuel and oxidizer are wb’ re-
spectively.

Equation 62 expresses the momentum conservation between
the injector and any station. The velocities Zye'axre the axial
components of the corresponding injection velocities.

Equation 63 expresses the energy conservation between the
injector and any station. The reference temperature is 7°=298°K.
Notice that the heat of vaporization of the propellants which
are usually included in their heats of formation, when at ambient
pressure and temperature they are in their liquid states, are in
Equation 63 considered explicitly.

Equation 64 is the perfect gas equation of state.

Equation 64a simply defines which product are being con-
sidered.

Equation 65 through 75 express the assumption of chemical
equilibrium of the products. Equation 65 takes into account that
not all the injected propellants are available for the chemical
reaction since part of them are still in their liquid phases.
Thus 2 defines the local mixture ratio of the gases and changes
with the distance from the injector.

Equation 66 definesqmm§m1ch is the weight of the products
per mole of vaporized fuel(often called the"molecular weight"” of
).

Equation 67 defines the total number of moles of products

n 3 n
the "equivalent mole C, Hy Ocy2z
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per mole of vaporized fuel.

Equations 68, 69, and 70 express the conservation of car-
bon, hydrogen and oxygen respectively.

Equations 71 through 75 express the chemical equilibrium
between the indicated products,

Equation 76 defines the total enthalpy of the products. All
the constants appearing in Equations 71 through 76 either come
directly from "JANAF" tables or are curve fits of data available
there.

Before briefly discussing how the solution of the previous
system was reached, it should be noticed that the previous 16
equations contains 19 unknowns ( pu, We,Wg , P' ﬂ-! , y)-r'fn* , %; x;...a .}, )
if the parameters at the injector end are given (\d,‘)w$'g.ux’”u)‘¢ )
and the fuel is specified (a, b, c¢). This system, in which gas
dynamics and chemical equilibrium equations are coupled, is not
easy to solve, even numerically. Small variations in the local

mixture ratio (&) bring about large variations in the composition

of the reaction products (X

vvvvvvv products ( X;). Similarly small variations in

the static pressure (p) bring about large variations in the gas
velocity () (since large variations of loss of static pressure,
P-P, generally correspond even to small variations of static
pressure). Thus the chances of an iteration scheme to yield
the desired solution from rough guesses for the controlling
parameters, & and p, are very small., In such cases it is better
to solve the system for fixed values of these controlling pa-
rameters, The first difficulty, however, is in spotting them

out. Having recognized that & and p are the controlling pa-




rameters, the solution was obtained in two steps; the first
step gives an approximate solution and the second refines it.

In the first step "TI: /2 is neglected in the energy equation
and P and % are eliminated from it using the mass conser-
vation equation and the equation of state. The resulting en-
ergy equation is equal to the 'adiabatic flame temperaturd' en-
ergy equation except for the kinetic energy term. This equa-
tion is then solved, together with Equation 66 through 76, for
fixed values of W, )w,’and p . Thus one determines y, T, ’TIL“,
€ ,)(1”.8 and h . These quantities are rather insensitive to
small changes in b’ as in the "adiabatic flame temperature" prob-
lem. The known pressure at the injector end (P, ) can then be
used. Next the equation of state, and of mass and momentum con-

servations are reconsidered and written as follows:

us= ( Wop - We + Wog - Wg )/ #

U /w = — ( fu:- B +P - ‘W‘QF"‘(,F-"‘"og Uxg )//u ( We + ‘v‘v’p‘)
The values of f , W and 'lTQ/‘u. are then calculated for selected
values of Pp (to which they are very sensitive) using M and T
previously calculated with Po . A set of tables are now avail-
able from which an approximate solution of the given system of
equations can be closely estimated for the specified values of
We , Wg , and p . 1In the second step the entire system of 16
equations in 19 unknowns is solved simultaneously by the New-

ton-Raphson method, using quite accurate guesses from the pre-
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vious tables and for selected values of any three unknowns (gen-
erally W’ N I i/u_ ). 1In general, then, for a given engine,
any three of the 19 unknowns should be measured to know the val-
ues of all of them. In practice, however, for LOX/hydrocarbon
propellants the region where liquid oxygen is still present is
small in comparison to the entire combustion length and highly
non-uniform so that the previous equations wouldn't be accurate
anyhow. The measurement of two parameters are then enough to
study the region where no liquid oxygen exists (wy==o). Actually
it will presently be seen that the solution of the given equations
is not too sensitive to the value of i;/bp so that the measure-
ment of only one parameter (generally the static pressure p) is
sufficient to determine the solution. 1Indeed much can be learned
without measuring anything but rather by simply studying the para-
metric solution of the previous equations (Section 3.3).

The results of three specific applications of this method
are now shown. The basic engine parameters of the three con-
he comple
or final, values of the engine parameters were calculated by set-
ting Wg =Wg =0 . They are also given in Table IV. These val-
ues were used as reference values (subscript{ for "final value").
Next the static pressure along the combustion chamber was meas-
ured (Figs,., 3, 8, 13). Finally the equations were solved for
the region with no liquid oxygen (Wy==0) and for several val-
ues of 1-1;/14. . The values of u/au‘, f/f' , T/Q and W, /W, for
the three engine configurations are given in Figs. 4, 5, 6 and 7

(first engine configuration), Figs. 9, 10, 11 and 12 (second



TABLE IV BASIC ENGINE PARAMETERS OF THE

A N el tser Qi aal

Oxidizer
Fuel

Injector Design

Injector Diameter (inches)
Injection Angle

Static Pressure at Injector
End (psia)

Engine Diameter (Inches)

Injection Oxidizer
Flux (V/y‘ g/sec cm?)

Injection Fue% Flux
(VQ‘ g/sec cm®)

Injection Mixture Ratio(O/F)

Injection Equivalence
Ratio (F/0)

Inlection Oxidizer
Temperature ( K)

Injection Fue%
Temperature ( K)

Injection Oxidizer

Velocity {(cm/sec)

Injection Fuel
Velocity (cm/sec)

Nozzle Entrance Mach
Number
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mToomTy

CONFIGURATIONS TESTE

I

LOX
Ethanol

4X4 Impinging
Like-on-Like
Doublets

.059
27%s5!

296
3

21.9

9.41
2,33

.895

98

.15

IT

LOX
Ethanol

4X4 Impinging
Like-on-Like
Doublets

.059
27%s5!?

299
3

18,7

12.9
1.44

1.44
98

293

N
N
[
1=

2637

.158

THREE

I1I

LOX
Ethanol

6X6 Impinging
Like-on-~Like
Doublets

.040
27%5°"

63.8
3

7.85

4,88
1.6

1.3
98
293
1020
966

314

Complete Combustiom (Reference) Values of Some Parameters:

Gas Velocity u*} (cm/sec)
" Density f' (g/cm3)
" Temperature Tk (9K)

" Molecular

Weight * (g/mole)
" Ratio of 8}
Specific Heats

17,080
1.832 10°
3290

25.2

1.201

19,100
1.658 10”3
3174

21,8

1.210

36,980
3.448 1074
3068

22,3

1,211
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engine configuration) and Figs. 14, 15, 16 and 17 (third en-
gine configuration). Similar curves could have been drawn for
the other engine variables. 1In all cases it can be seen that

a relatively narrow family of curves is obtained for all realis-
tic valués of iQ'/t,. Thus the measurement of the static pres-
sure and its direct use have been sufficient to determine most
of the engine variables without having assumed anything about
the way the fuel actually vaporizes and burns (no droplet drag
and vaporization model was used). In order to verify the valid-
ity of the method, the particle velocity was also measured by
streak photography at specific distances from the injector in
all three configurations. The measured particle velocities are
given in Figs. 4, 9 and 14 , with their range of scattering

( vertical bars). The agreement is satisfactory. Notice that
further resolution, within the 1T¢ /% families, could have not

been achieved by streak photography.

3.3 Results And Discussion

In this section, the solution of the steady-state equa-
tions (Equations 61 through 76), for the case in which LOX/
ethanol are the propellants, is discussed., A parametric study
of the system was performed for the region where no liquid ox-
idizer exists and some conclusions were reached without any need
of experimental data and of drop drag, vaporization, and distri-
bution models. Thus the parameters of the study will first be
defined, then the leading assumption of this study will be dis-

cussed. Next, the energy and chemical equilibrium equations will

be considered to conclude that they could have been solved a priori
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to yield something like an equation of state for the combustion
products. Than the momentum equation will be considered and the
influence of the initial momenta of the liquids and of the drag
and vaporization of the drops will be discussed. Finally the
problem of steady-state axial uniformity of the gas properties

will be examined.

3.3.1 Definition Of The Parametric Study

The following parametric study of Equations 61 through 76
was performed. The equations were solved for the LOX and ethanol
propellants. The injector design was kept constant. The only
injector parameters entering into the equations are the number
of orifices their diameters and their injection angles (16, .059"
and 27° 45° respectively for both propellants). The pressure at
the injector end ( p ) was set equal to 150, 300, 600 psia. The
injector fluxes of propellants were varied as to give injector

*
equivalence ratios ( EQ&0 ) of .9, 1,44, 1.9 (where 1.44 cor-

*
Several parameters are often used to identify the mixture

ratio. It might be helpful to list those which have been
used in this study:

Me (W - W,
2= _Jig_JL__!)=.moles of vaporized oxidizer per mole of

Mg ( Wop, - Wp) vaporized fuel

2= 3= stoichiometric value of 2@ since: C, H,OH + 302-72C02+3H20

EQR = r.;Qz(F/,')s?;:. equivalence ratio. NOTE: EQR >1 for fuel
L rich mixtures

My, 2 My
= mixt tio b ight =@ —— 3 —— = 2,09/EQR
(%) mixture ratio by weig 2 m, - we /EQ

In general there are injection values of & and EQR (called
éo, EQRp and equal also to their complete combustion, or

final values) and local values corresponding to the local

gas mixture ratio.
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responds to maximum c* while .9 (lean mixture) and 1.9 (rich
mixture) give roughly the same c*) and complete combustion

Mach numbers of approximately .15 and .55. The solutions were
obtained for ®g/w = .2 and 1.0. Thus the system of equations
was solved for 3x3x2x2=36 different input parameters. For each
of these 36 cases, 5 computations were made for (F -p)/(h -%)
approximately equal to .2, .4, .6, .8 and 1.0. This parameter
gives the loss of static pressure at some distance from the in-
jector (b ~p) divided by the loss of static pressure correspond-
ing to complete combustion ( B -&). It simply fixes the local
static pressure since the pressure at the injector end (b)) is
part of the input and the complete combustion pressure (*i) is

uniquely determined by the overall input,

3.3.2 Discussion Of The Assumptions

Equations 61 through 76 are based on the seven assumptions
given in the previous section. The computations clearly show
that the solution is insensitive to the assumed temperature of
the liquids (assumption 4) and to their kinetic energies (as-
sumption 6). In the conventional approach, the local temperature of
the liquids affects considerably the results of steady-state
computations since it influences the droplet vaporization rate
which, in turn, controls the results of the computations (see
Section 3,6). 1In the direct approach,however,the drop vapori-
zation rate does not appear, having been substituted with meas-
ured or fixed gas quantities such as ( b, -bL/(g-&). The drop-
let temperature, then, enters only through the energy equation

for the gases where it modifies the amount of heat necessary to
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vaporize the liquid. This is a small fraction of the heat re-
leased by the chemicai reaction, and therefore does not influence
appreciably the solution of the equations., Checks on heat trans-
fer and friction effects were made and found to be small (assump~
tion 7). The assumption of no recirculation (assumption 3) is
important. Recirculation can be expected to be active near the
injector, within distances of the order of the distance between
injector units. This region is also non-uniform and probably
contains also liquid oxidizer, A qualitative investigation of
this region is briefly carried out in (Section 3.4). 1In this
section, however the combustion length is assumed to be consid-
erably longer than the distance between injector units as is

the case for most practical engines as well as for the experi-
mental engine used in this research. Thus, the assumption of

no recirculation is likely to be a good one as far as this study
is concerned. On the other hand, the assumption that gaseous fuel
and oxidizer react instantaneously to give equilibrium reaction

= — [ R P

products (assumption 5) is so important t

- 4 = xr=212 A2 4ber A
llau Ll VCl.L.LuJ.L.Y w

£
the results of this study depends on it. It can be seen as the
leading assumption of this study. One of the immediate conse-
quences of this assumption is the calculated axial non-uniformity
of the gas properties which will be discussed in the following
pages, To support the validity of this assumption the follow-
ing three evidences can be cited:

1) The current approach has led to the calcula-

tion of gas velocities which were then veri-

fied by streak photography in the three engine

configurations tested (Figs. 4, 9, 14).
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2) The amplitude of a shock moving toward the in-
jector increases markedly while its velocity
does not change appreciably indicating a low-
er speed of sound of the gases as the injector
is approached (axial non-uniformity of the gas
properties).
3) c* measurements yield temperature estimates
close to those calculated in the present study.
In spite of the quoted evidences, the assumption of instantaneous
chemical equilibrium must still be regarded as a working assump-
tion and its validity evaluated case-by-case. One can say that
it seems to be verified for the LOX/ethanol system when the com-
bustion length is considerably longer than the distance between

injector units (Combustion length »» Recirculation length),

3.3.3 The Energy And Chemical Equilibrium Equations

The energy and chemical equilibrium equations can approx-
imately be solved independently of the other equations of the
system, These equations are rewritten below in a form which is
convenient for the present discussion., Gas velocity and density
have been eliminated from the energy equation using mass con-
servation and the equation of state while the kinetic energy of

the liquids has been neglected
Me( Wog = Wg )

= EQR = 3/a
Py (wor — ¥F)

Mem= My + 2 My,
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Equations 68 through 70 (chemical species conservation )

Equations 71 through 75 (chemical equilibrium equations)

where Gkﬁ,repreSentS the energies needed to warm up the liquids

to their wet bulb temperatures, to vaporize them and to bring the

vapors to the reference temperature ’T°= 298° (see Appendix A).

The gas kinetic energy and G&; are small quanfities within the

energy equation where the baiance between the change of latent
enthalpy of the gases and the difference between the heats of
formation of the products and those of the reactants dominates.
If gas kinetic energy and Q’:d were neglected, the propellant
fluxes would appear only in the variable 2 which specifies the
local mixture ratio of the gases. Thus the solution of the above
equations can be expected to depend mostly on 2 (or equivalently
on EQR since EQR = 3/3) and on the pressure, as in the "adiabatic
flame temperature"problem. The pressure itself can be expected
to have a minor influence, The above equations determine the
values of fﬂ!h, h, T, X;, Y and % since b/f ='(’Tr/nn,,_. Thus
these quantities can be expected to depend primarily on EQR for
all values of %F,d v b Mg ana -“;/u for which the complete set

of equations (Equations 61 through 76) were solved. .This is in-
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deed the case as Figs. 18 and 19 show. | , M, hﬁ’ are func-
tions of EQR only within + 5% due primarily to the influence of
the pressure. The ratio of specific heats (y), @ =¥A/p , the
internal energy of the gases (@), and the heat released by the
chemical reaction (gf) are also determined by the solution of
the above equations and therefore are also, approximately, func-
tions of EQR alone. In conclusion m"m' h, T, X,y P/, 7. a,e
and yocan approximately be considered functions of EQR alone
rather than of EQR, w";l v Veg and p . For most conventional
studies this approximation should be both useful and acceptable
since most of the uncertainties are centered around the distri-
bution, motion and vaporization of the drops and a 5% error in
the above gas properties should be quite acceptable. Notice
however that p, ® and therefore M still depend on w°r,¢ ,

wg, , and p as well as on EQR. Thus, instead of studying
the complete system of equations, one could have studied the fol-
lowing one which is considerably simpler

P?L = “@;‘ W}'*“5¢'” Wy

z ——
PUTE -k 4 W W = Wp W+ Woy Ung — Wy Ug

p(wo, Wg
%;"WF

where the last equation can be looked at as an equation of state
characteristic of the propellants and valid within a reasonably
wide range of pressures (given in Fig. 19 for the LOX/ethanol

system)., A similar approach was followed by Campbell and Chad-

wick20. They assumed chemical equilibrium of the reaction prod-
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ucts and read into their computer program tables of "adiabatic
flame temperature" parameters versus pressure, temperature and
mixture ratio., They could have gone one step further and ex-
pressed the above gas properties versus mixture ratio alone.

The error would have been small and the computations consider-
ably simplier. 1In summary, if the engine configuration is giv-
en its steady-state could be studied by the above three equa-
tions which contain six unknowns: f U, W, Wy p ., and ig/hn
Three of them must be measured or specified (generally Wy ,ﬂbﬁc,
k) to obtain solutions for the other three. At this point it
is important to notice that the bulk gas properties which

depend primarily on EQR are very sensitive to it (see

Figs. 18 and 19). 1In general, EQR will change along the engine
axis and therefore those bulk gas properties which depend on it
can be expected to exhibit axial non-uniformities. The problem
of the axial uniformity of the gas properties will shortly be
reconsidered. 1In conjunction with the energy equation the fol-
lowing observations are also of

v aaa

nterest:

a) The fact that GL, GL'have littlé influence on
the solution of the equations used in the di-
rect method, means that its results are not
sensitive to the assumption made about the
temperature of the liquids as previously stated.

b) The fact that the temperature drops below real-
istic values when EQR tends to zero implies that
the assumption of chemical equilibrium of the

products together with that of complete vapor-
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ization of the oxidizer and of uniform one-
dimensional flow with no recirculation lead

to unrealistic results near the injector,

For this reason most of the charts presented

in this report originate at some distance from
the injector. 1In Section 3.4 the region very
close to the injector is studied for one spe-
cific engine configuration in an attempt to get
some qualitative information about this region
which could be important for instability. Pa-
renthetically notice that with the direct ap-
proach the far region of the engine can be
studied without either calculating the near
region or postulating anything about it. If

one had used the conventional approach, he

would have had to start his calculations from
the injector (or at some distance from it but only
after h

nostulated the initial values of the

parameters at that distancgo).
In this study the following eight products have

been assumed to be present: OH, CO, CO 0o, O

2’ 2’
Hz, H20, H., Computations show that none of these
products is consistantly negligible for all cases
of the parametric study. It is probably true
that omission of some of the above products
would not have large effects on the bulk gas

properties while simplifying somewhat the compu-
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tations, However, as previously explained, one
could avoid using enefgy and chemical equilibrium
equations altogether still introducing no more
than a 5% error in the bulk gas properties., This
is then the way to go if one wants to simplify

the computations, rather than that of eliminating
a few products,

In theoretical instability studies, where reason-
able simplifications are necessary, one often sets
e = b/f((—/) where for Y one usual.ly selects its
complete combustion steady-state value. For the
above expression to hold exactly, the gas should
be thermally and calorically perfect. But the com-
position of the actual combustion gas changes ax-
ially and the specific heats change with tempera-
ture. Thus the above expression for € 1is not
exact, It was previously explained that the ac-

valucs of e, b/ p and Y de

e, J 1d Y end al-

[

tual loca
most exclusively on the local mixture ratio of
the gas., Comparing the actual, local value of e
(calculated for the local composition and with
varying heat capacities) with the actual, local
value of p/p(y-1)one finds that the latter is
some 10% to 20% larger than the former. If in-
stead of using the local value of y one used its
complete combustion value the error in the colder

part of the engine would be larger (closer to 25%).
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Most of the difference can be explained by the

- variation of the specific heats with temperature.

Using the values of the specific heats (or ofy )
relative to the local chamber temperature leads
to overestimating the internal energy since the
specific heats increase as T goes from its ref-
erence value to its local chamber values. Thus,
wanting to set e = P/}( ¥-/), one should use

for Y a value slightly higher (or for the spe-~
cific heats slightly lower) than that correspond-
ing to complete combustion. For the LOX/ethanol
system ¥ = 1,235 (rather than )y = 1.21) is sug-
gested.

The parametric study shows that only one param-
eter comes close to being axially uniform for all
injection mixture ratios and chamber pressures but
for small chamber Mach npnumbers., This is the energy

released by the chemical reaction per unit volume

of the combustion chamber ( ff”). The energy
equation can also be written as follows (see
Appendix A)
! 3 2z - L
P,.U - - Uy )
pufest o X ) rur[oe(h 3)-He - ) (4 )
where: - V'(;/(Aof* _';W)]

8 T
e+ ;- = 4.186 |o'°Z X; C,‘_('r) JT//WI“

—upg®= puh + (We - ) by + (W —ug) iy

In the above energy equation, the right hand side



represents the energy source for the gases, The
quantity ( p7° ) was found to be proportional to
the chamber pressure and roughly independent of
equivalence ratio, particularly if the very high,
unpractical values of EQR, are excluded (see Fig.

2Q) . Thus for H“, &£ 1S one could set

o 5.25 IO’
f? ~ ’ : p = 5 08 b
iIso 68.97 1o

The exact reason for such a relationship is not
clear. One could notice, however, that as the
nozzle is approached the gas density always de-
creases while the chemical energy released tends
to increase, reflecting more favorable gas mixture
ratios in spite of higher dissociation. One may
also notice that if kinetic energies and vaporization
energies are neglected in the above steady-state
energy equation, the chemical heat released goes
into latent enthalpy of the gas
P _ a0

.8+7-—9>
One could then set € = p /p (¥ -/ ), still being
aware that this expression is itself an approxi-

mate one as explained above, thus finding

o
_.r-k:ff
-
which shows that, whenever kinetic energies and
vaporization energies are negligible and € = k/}(fL'),

then the volumetric energy released can be expected

to be uniform. For )’= 1,235 the coefficient of b
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would be 5.25. This dependence of the volu-
metric energy released on the chamber pressure,
but not on mixture ratio, might be of some use

in the problem of scaling of rocket engines,

The relationship between steady-state mass and
energy sources is of some interest., The steady-
state is often assumed to be uniform within terms
of the order of the chamber Mach number. In this
model”™™, pressure, density and temperature are
axially uniform, and mass source, energy source
and gas velocity gradient are proportional. 1In
Appendix A, it is shown that the latent stagnation
enthalpy of the gas (e + b /g + uf/z) is axially
uniform when the vaporization processes are such
that, at any distance from the injector, equal
fractions of the two propellants have vaporized.
This is a practical example in which the above

A Ln crmaed £4
d be verified

[

uniform steady-state model wou
(within terms of the order of the chamber Mach
number)., In general, however, one of the two
propellants vaporizes more quickly than the other
and an axially non-uniform gas composition occurs,
From this, non-uniformities in the temperature
and in the other parameters of the gas can be ex-
pected to follow, Similarly the energy source
can be expected not to be proportional to the

mass source as a direct consequence of the vary-
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ing mixture ratio of the gas., The non-uniformity
of the gas parameters will be reconsidered in
Section 3.,3.5 (for the LOX/ethanol system)., Here
the relationship between mass and energy sources
is briefly considered. Thus mass and energy con-
servation equation can be written as follows (Ap-

pendix A)

dz(P -""(fﬁup+f¢ ’) =
g (pu(es} *‘-5)) - - Zpeepst gy
v R (M) +f Y (Mgt %0)) = B

Recalling that the chemical energy released
(Appendix A) is given by

—pu gt pukle (- )b+ (W -Wog) by

and substituting it into the expression for the

energy source one gets

S 2
F ) 0 A /A _Tau.

[ dzL pug’s by ity by 4% (A
+5% (A,,+39)] dn[fu‘f (Ag.!)..ﬁ?g(/\,#_‘!ﬂ

Calculations show that in the above expression

the leading term is that containing the chemical
energy released ( fztyo ), whereas the vaporization
energies ( (’&”A>6f) are smaller, even though

not negligible (except in the vicinity of the in-
jector where they are as large as wp ). Recall-

ing also that the volumetric chemical energy re-
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leased ( f?o) was found to be nearly axially
uniform, one concludes that the gas velocity
gradient is roughly proportional to the energy

sources
F =y
However energy and mass sources are not pro-

portional
o
g/a = M E/L(r)

If the density were axially uniform one would
find again the proportionality between mass and
energy sources. Typical axial density profiles
(for the LOX/ethanol system) are given in Figs.,
5, 10, 15 and 24 and they are seen to be quite
non-uniform. To evaluate a typicalfr/Q ratio,
the engine configuration II of Table IV, whose p
and ¥ are given in (Figs. 9 and 10), is now con-
sidered. First the following dimensionless terms
are introduced in the above equation

P"; ’/ﬁ - u/u‘ 2"z =2/ 5"

thus getting
(Bra)/(2978) = (£.%" )7 ( =% (F's")

Toward the end of the combustion region, both nu-
merator and denominator of the right hand side of
the above equation tend to zero. For physical
reasons they will have to be infinitesimal of

the same order so that their ratio is finite,
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Actually the ratio will tend to 1.0 since, for
P> f;‘ ,f/q_, 50‘ (within the approximations
made to obtain the above relationship). Thus
the departure of the right hand side from 1.0
is the measure of the axial disuniformity of the
ratio g/Q(see Figure 20b). It is difficult to
relate the behavior of f/q' directly to the be-
havior of the various gas variables since the
definitions of f and Q involve the derivatives
of the gas variables rather than the gas variables
themselves., Figure 20b says that the rate at
which energy is added to the gas is, near the in-
jector, lower than the rate at which mass is added,
Soon, however, the situation is reversed and at
some distance from the injector a situation is
reached where the rate of energy released per
unit rate of mass released has a maximum (prob-
ably related to a more favorable gas mixture
ratio). Toward the end of the combustion both
rates decrease and become proportional to each
other (or the dimensionless rates ratio tend to
1.0). A similar trend was exhibited by the en-
gine configuration I of Table IV, Before clos-
ing this section it might be worth noting that
the complete combustion value of ?o , as cal-
culated by computer and including dissociation,

10

was found to be 6,152 10" “erg/g while excluding
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dissociation would have been 8.4 lOlOerg/g in-
dicating the extent of the role played by dis-

sociation (Configuration II of Table 1V).

3.3.4 The Momentum Equation

Two questions about the momentum equation will now be dis-
cussed, The first one is about the momentum exchanged between
the gas and the liquids. The second one is about the importance
of the initial momenta of the liquids. Again only that region
of the engine where no more liquid oxidizer exists is now con-
sidered, The momentum egquation then is

2 —
The term within parenthesis can also ’I.)e written as
x
0 d(wii)des/d —'Jz-tjuv d¥e g
We Ug ~ Wop Un, ‘/d..( g ) o = | 5 (W)U, /" I

© (]
The first integral is always negative since the flux of liquid

fuel ( w; ) decreases continuously with 2 due to the vapori-
zation., This term represents the momentum given by the liquid
to the gas, due to the vaporization of the liguid., The sccend
integral is always positive in the region where i;<24. This
term represents the momentum taken by the liquid from the gas
due to the drag on the liquid. A question of some interest is
whether the two effects (vaporization and drag) are of the same
order or one is negligible with respect to the other. If the
effect of drag were smaller than that of vaporization, the term
( W;I_l; - W, Uxp ) would be negative. The value of this term
(divided by momentum of the gas) vs the loss of static pressure

(divided by the complete combustion static pressure loss) is
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given in Fig. 21 for all the cases of the parametric study.

For each engine configuration, there are two curves corresponding
to  Mg/%= 0.2, 1.0. The actual value of ( wyig, - Wy U ) will
fall between these two curves, At first glance one would con-
clude that drag and vaporization effects in the momentum equa-
tion of the gas are equally important since ( wg H, ~Wop Uyp )
seems to take on both positive and negative values. However, if
the injection velocity is limited to less than, say, 150 ft/sec

( 4572 cm/sec) as in practice is, then most of the engine con-
figurations which gave neutral or negative values of (wpi-w.p‘u,,_.)
would be ruled unrealistic. Further, the actual value of _1;/1..
is likely to be closer to 1.0 than .2 in most of the engine (as
the calculations of Section 3.6 also show). Thus one should
conclude that, in practical cases, the effect of drop drag on

the momentum of the gas is larger than (or at least equal to)
that of the drop vaporization., This is due to fact that the mo-
mentum that the liquid carries into the chamber ( Wop Uy ) is
usually small, due to low injection velocities, ar
the momentum that the vaporized liquid adds to the gas is small.
On the other hand, the‘momentum taken by the drops from the gas
through the drag is generally high as it is shown by the ten-
dency of i&;’ W rather than staying constant. In Fig. 21
notice also that in the vicinity of the injector, where the loss
of static pressure is still small, the ratio of (\,/','17¢ - W, U,

to fu? is very high. Thus in this region the proper handling

of the momentum of the liquid becomes important to the accuracy

of the solution, and this brings up the subject of the importance
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of the initial momenta of the liquid.

In the vicinity of the injector the initial momenta of the
liquids are essential to the accurate determination of the steady-
state for all chamber pressures, injection equivalence ratios
and nozzle entrance Mach numbers., If one assumes that "'uf./u,= 1,

mass and momentum conservation give

[.‘i] n | Wop Uxe + Woy u,.,]"_[l_ Wor Ung + Hoy "u](h""]
5, Po- by bo-by k-k

Thus the ratio of the local gas velocity to the final gas velocity
(14/«;) is a linear function of the percent loss of static pres-
sure and intersect and slope are functions of the initial momenta
of the liquids. If the initial momenta of the liquids were ne-

glected one would obtain
[_"ﬁ] =~ h-p
w,)_ h-b
“‘c/u" o

In Fig. 22 the results of the parametric study are given. The
above linear dependence is evidenced. It can be seen that the
departure from the 45  straight line {initial momcnta neglected)
is large, particularly near the injector and for high injection
velocities, thus showing the importance of the initial momenta
of the liquids. ©Notice that one could calculate the local gas
velocity, from measured static pressure data, directly from the
previous linear relationship by just knowing the basic parameters
of the engine if he were to assume that ii,h(=:l (not even the
assumption of chemical equilibrium of the products would be nec-
essary), The influence of -E,/u # 1 is shown in Fig., 22 by

the results of the parametric study. The ’T(;/‘k# 1 results come
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now from the solution of the complete system of equations and
therefore they are functions, in particular, of the assumption
of chemical equilibrium of the reaction products. Indeed from
mass and momentum conservation one now gets only the following

relationship for Me/w # 1

w N + % W, LY
[-u—]-— LY I
REAY pu + W T =

And the gas flux (fu) is now to be determined using the complete

set of equations,.

3.3.5 Axial Uniformity

The question of steady-state axial uniformity is relevant
to many important theoretical and practical problems such as the
order of the terms in the conservation equations for theoretical
instability studies (Section 3.5), the interactions between liquid
and gas phases (see Section 3.6) and the heat transfer to the
chamber walls, The results which are about to be discussed are
valid for the LOX/ethanol system for subcritical engine conditions
of practical interest. They are subject to the validity of the
assumption of chemical equilibrium of.the combustion gas and of
no recirculation (except in the vicinity of the injector) which
in turn have led to satisfactory results in the three engine con-
figurations tested. They do not depend on any droplet drag, va-
porization or distribution model, The result is that all gas
parameters exhibit some degree of axial non-uniformity. The
trends of the individual parameters are not evident a priori
due to the nonlinear nature of the equations which interrelate

them, Some of the most important parameters are now individually



112

considered.,
e
p : The axial change of static pressure is of D(fu ) or
more specifically
. r1l
h-b %'

b

- b = ;5+-nq=uxﬁ+-w%,uﬂ’
I+ Qn,

Thus for ﬂ‘<.5 the maximum change of p is 20% and it is in-
dependent of chamber pressure and mixture ratio.

T : The axial change of temperature depends strongly on the
injection mixture ratio (Fig. 23). If the injection mixture is
lean, EQK, < | , the temperature increases uniformally along the
engine starting from a value which could be as much as 50% lower
than its final one. If the injection mixture is rich ( EQK, > 1,
say maximum c* mixture) a higher degree of temperature uniformity
is expected., Near the injector it is still lower but it quickly
reaches a value close to its final one as soon as enough fuel
has vaporized as to make the mixture ratio of the gas close to
stoichiometric, If the mixture were very rich, the temperature
he injector but would then rise
quickly to decrease again before combustion of the liquid fuel
is completed, Such rich mixtures, however, are not practically
used, It is interesting to note that the maximum c* mixture,
is also the one which exhibits the greatest temperature axial
uniformity, Also higher chamber pressure and Mach number favor
temperature uniformity.

/hL ¢ The average molecular weight of the products changes
by as much as 50% as the mixture ratio of the gas varies (Fig. 18).

Notice that, for EQR, 's of practical interest (say €84 < 1.44,
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which corresponds to maximum c*) the temperature mostly increases
along the engine while the average molecular weight decreases.
This brings about a strong axial non-uniformity in the density
since p =P’m/,€'r and p decreases as well along the engine.’m.
is practically independent of chamber pressure and Mach number,

)P : The density, as above indicated, is the quantity which
undergoes the strongest axial disuniformity (Fig. 24). The dens-
ity at the injector can be expected to be at least twice as large
as the complete combustion‘density, for practical engine config-
urations, Density uniformity is strongly influenced by chamber
pressure with higher pressures bringing about higher uniformity.
Also rich mixtures and lower H‘ favor density uniformity.

Y : The ratio of the specific heats is rather uniform
(.26« y < 1.2) but the factor (Y- 1) can be expected to change
by 30% along the combustion chamber.

Q : The quantity @ = (Tﬁ/f{)!‘i varies roughly as ('/_f);5 (see
Fig. 25) and the variations of f have already been considered.
Notice that the variation of § is more closely related to that
of f than to that of T due to the simutaneous variations of M

R4 _IRT
i

=) Notice, for example, that a4 increases uniformly
along the chamber length for mixture ratios of practical inter-
est, while T could actually first increase and then decrease.
The quantity ('J'P/J);i is close to the speed at which an infin-
itesimal perturbation would move (speed of sound) but it does
not necessarily coincide with it due to the reactive nature of

the medium under consideration and to the presence in it of

mass, momentum ,and energy sources (see Section 3.5).
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. _P}9° : The volumetric energy released is close to uniform

‘ along the engine for mixture ratios of practical interest and
for low chamber Mach numbers, 1Its value is proportional to the
chamber pressure and roughly independent of the mixture ratio
as already indicated (see Section 3.3.3).

g : The specific internal energy of the gas varies roughly

as F’/,(f—l) if p,p, and )y are given their local values as pre-
viously indicated., Since both Jp and (y-/) tend to decrease

along the chamber, the changes of e resemble those of '{?.

3.4 Region With Liquid Oxidizer

The one-dimensional approach to the study of this region is
hardly justifiable, as is the assumption of uniform chemical equi-
librium of the gaseous species., Even accepting the above two

’ limitations, this region could not be determined with any de-
gree of accuracy since the experimental measurements in this
region show great randomness. The determination of the non-
measured variables by Equations 51 through 76 and by the use of
the measured ones, then becomes a matter of interpretation of
the experimental data. This is most unfortunate since this
region is likely to be important as far as high frequency insta-
bility is concerned. Thus, this region will now be investigated
qualitatively. A number of interesting results will be reached
among which are the following ones:

a) The initial momentum of the liquid should not
be neglected in steady-state calculations.
b) The increase of static pressure in the vicinity

- of the injector is produced by the initial mo-
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mentum of the liquid.

¢) The point at which the liquid velocity is equal
to the gas velocity (%, =%) is further from the
injector than the point at which the static pres-
sure tops off after increasing ( Q‘== 0).

d) The velocity of the liquid need not necessarily
decrease before increasing.

e) Temperature and static pressure measurements near
the injector help considerably in defining the
local state.

The first engine Configuration of Table I is specifically studied
in this section.
The momentum equation is considered first. If one assumes

that both liquid fuel and liquid oxidizer move at the same ve-

(Prdete + (P%)Un + bx + (f¥e) Vex +(fve), Ve = o

f"u.z-r P-b, + [};%z—(wo,un,.-‘— %,u;,;)]= o
Static pressure measurements near the injector indicate that the
static pressure first increases a bit before decreasing. In the
first engine configuration, the static pressure reaches a maxi-
mum between 1 and 2 inches from the injector (see Fig. 3). The
first of the above equations shows that as long as the static
pressure increases the liquid must be losing momentum (the first

two terms are positive, the third must be negative). The second
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equation shows that the liquid can be losing momentum while its
velocity is still increasing provided that the vaporization is
sufficiently strong (the first three terms are positive, the
fourth term could be positive or negative and the fifth one is
negative). The third equation shows that as long as the static
pressure is greater than the injector static pressure, the driv-
ing force is provided by the initial momentum of the liquids

(in the first engine configuration, approximately the first 2
inches). 1In this region the largest terms are the liquid pro-
pellant terms while the gas momentum and the static pressure
difference terms are small. Finally, it should be noted that
the point where ¢Q==u.must occur further away from the injector
than the point at which ba. = 0. When U,= W the drag term is zero

( u(x-_— 0), and (Pu),® and (f, %, L u cancel each other

e
out because of mass conservation. Thus the second equation can
e satisfied only if Ph is negative., Hence in the first en-
gine configuration the condition Y, = WU must occur turther away
from the injector than say 1.5 or 2 inches. The fact that the
velocity of the liquid fuel might actually be different from
that of the liquid oxidizer produces more possibilities and, for
instance, one propellant could slow down after injection while
the other could accelerate. The fact still remains that as long
as the static pressure is greater than the injector static pres-
sure, the driving force is provided by the initial momenta of
the liquids and that at least one of the two uF =W, 1&= w

distances must be further than the p, = 0 distance. Mass and

energy equations are now considered under the assumption of uni-
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form chemical properties of the gas. This region is character-
ized by low temperature (less than 24OOOK). No dissociation
phehomena need then be considered, and all the fuel can be as-
sumed to give CO2 and H20 products. The energy released per
mole of gaseous fuel is then constant. Equations 66 through 70
invqlving the chemical species in the gaseous products can now

be greatly simplified
Ca“(. oc." Z'OL_’ X.CO,_*X,_ Oz"'xa H;O

- / +

m, =lza+£+ 16 (c+22) (66a)
y=2+%+ é- (67a)
X, = a (68a)
X,= L/2 (69a)
X, = [ c+22 - (2a+2/2)] /2 (70a)

In the above equatiouns g , which reprecsents the local mixture

ratio of the gaseous components, is the only unknown. € now
depends on the vaporization of both fuel and oxidizer. If it
is assumed again that both liquid fuel and liquid oxidizer move
at the same average speed, then one can identify the fractions

of liquid fuel and liquid oxidizer by the following parameters

d, = Ue fe /Wop "(, = Ue fyy /Woy

Then € can be written as

Zz = “bﬁ /ntp ['I— %’:]
WOF m’ l-l(p

(15a)



121

The mass conservation and state equations now give

og = 1= f"‘-/cw"F (1+2Mg/m; )] (11a)

T= P ,m“"/r)'k (14a)

It could be shown that after some algebra the energy equation re-

duces to

3 3
Z=G,+G, ¢ G = -256 G, =434 Io /g

The above equation includes the effects of the vaporization en-
érgy now as important as the mechanical work (k{r). The en-
ergy equation need not be simplified and could be handled by
computer as it was done in the previous section for the region
with no liquid oxidizer. Here, however, one is after more qual-
itative arguments and then it is useful to solive thg approximate
system of equations in closed form to discuss its behavior.

Even so the results from the above equations match the results
from the more accurate equations given in Section 3.2 if q}= 0]
(no liquid oxidizer) and for temperatures less than 2400°K, and

greater than 2000°K. Using Equations 6la, 63a and 65a the fol-

lowing relation between 2 , d; » W is found

m
az+ &-' qn’ Z-f- d_’_.‘_l.zo z(¥= u_:
G + ¥ i e, Woor
u* Mg 2

If one assumes that the gas velocity varies linearly from the
injector to five inches (where it is known, see Fig. 4) and that

the liquid oxidizer decreases linearly in the same interval (to
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be zero at five inches) one finds the interesting result that
' € is constant in the interval. By virtue of Equations 63a,
64a, 66a, 67a and 70a, this implies constant gas composition,
density and temperature while by virtue of Equation 65a the
fuel would be vaporizing linearly within the interval (to its

value at five inches). Move specifically one would get (see

Fig. 26)
X =0 —» s
%W =20 —s 7000 OM /oo Assumptions
4’ =) —_— o
2= 12-6_4 ,
_{:: 23,:; '; 9/“‘ Results
olg = | —_— 73§

However, temperature measurements indicate that the temperature
. is not constant in the 0 to 5" region, So close to the injector

at any given distance from it, the temperature is found to vary

fuel or an oxidizer orifice, or in between (this merely shows
the inaccuracy of the simple one-dimensionality assumption in
this region). At 1' the temperature measured in the first en-
gine configuration was about 2000°F between oxXygen and ethanol
orificies and about 1200°F in front of the ethanol orifice., At
3" the measured temperatures are roughly 3800°F and 1800°F re-
spectively. Wishing to carry the one-dimensional analysis fur-
ther, the temperatures of 1200°K and 1700°K and 1" and 3" re-
spectively were used., Further assuming that the fraction of
liquid fuel decays linearly in the interval from 0" to 5" (from

. 1 at the injector to .735 at 5") one can then calculate the



'@

123

other parameters, thus finding:
7 "

% = / 3

T (*) - 1200 1700

Z = 2§ 7
p(I/omd) = 634 15’ 45167
d: = . 947 .84
dy = 603 +130

W (mfoe)= 1420 4180
U, (t»/oee) = 1080 3000

Where the average velocity of the liquids, t& , was calculated

by using the momentum equation and the measured static pressure
(Fig. 26). The above results could be used as such although they
ljead to a linear variation of gas particle velocity in the region
0" to 5" and to a 1((=Zt distance of 1.5" more or less coinciding
with the b& = 0 distance (see Fig. 3). Experiments show that the
gas velocity is not quite linear in the region 0" to 5" and one
would like +he point U =W to be a bit further away from the in-
jector than the point p,= 0. Both points can be taken into ac-
count by abolishing the assumption that the fraction of liquid

fuel decays linearly in the interval 0" to 5". Thus assuming

that at 1", o= .98 one finds

-3 -
At 1"  T=12e0¥% 3=25 p=634l0 j:., a2 4= -85
O
W= 536 Om/ae ’lle': 2odo n/sne
The above results lead to the third graph of Fig. 26 . As

previously stated, these results are only qualitative. However,
since they are derived by the direct use of experimental data
(temperature, static pressure, particle velocity) and since
they respect basic equations they can be recognized to have some

indicative value.
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3.5 Perturbation of the Steady State

It is desired to find a perturbation scheme, for the con-
ser ation equations, consistent with the steady state axial non-
uniformities discussed in previous sections and to evaluate the
effect of the steady state axial disuniformity on the frequency
of a small periodic perturbation. For simplicity, the internal
energy is replaced by p/p(¥-1) with )= const. but its value is
assumed to have been properly selected as to minimize the error
involved in the substitution. The unsteady conservation equa-
tions given in Appendix A are then considered and the following

dimensionless quantities are introduced

oz £_t “ 2 *_he Ll
x = — = 9 f= £ _= % = a
X “_ 2 L ° h Y X
w = _F§ = = g:. - A4 =
e Q p A 5Py Ty Ad .
4 g b /5, (v-) b /Ry (73 h/p ()
with az = n@/q? .
Omitting the stars, the dimensicnless oguations are

If ¢ 1is a quantity of'3(7#) , the following ordering for the

steady state quantities follows from what has been learned about
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the steady state of the LOX/ethanol system (Sec. 3.3)

L*
f(x)= L (®)

® o)
' /%ﬂ,z )
%(z)= ©O + € % =)+ ...
4 AN
G . o 4+ € ,{6 () (
2)
pb(2) s ] + o + ez/; () # ...
ol®)
h(’)s l‘, (>e)
ote/
by = brg

Neg= AL, ()

where, for any given chamber pressure and injection mixture
ratio, the axial variations of flj%"ba are of order 1. Also &
is different from zero only near the injector; h:d are con-
stants; Aﬂd are independent of H‘ . In the above expressions,
the subscript zero stands for "Steady State" and the superscript
ers to the correspending power of & . The previous ordering
simply eliminates the kinetic energies and introduces a constant
static pressure in the energy equation. The resulting lowest
order equations are consistent with the steady state previously

calculated in the entire engine

(v n) (w ui (” ()
x f bt =0
o) ()% (9 (’/z @ 4
jd—[fé L A by
y 2

o) (1),009 0 (@) © ) ) .
4 0) }:’“ 2 A 7('0 (Fo A’P/)+ 77‘ (’cp"’/"(‘?]-o

d=z Ty
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If one assumes that one of the two propellants vaporized instan-
taneously at the injector, he can then eliminate the correspond-
ing terms from the above equations and introduce its initial
flux, momentum and energy through the boundary conditions at the
injector end. In the case of the Lox/ethanol system, the vapori-
zation length of the fuel is much longer than that of the oxi-
dizer, thus the above assumption seems reasonable and can be
used also to study the perturbation of the steady state. Thus,
if the steady state is subject to an unsteady perturbation of
amplitude € , one could modify the previous steady state order-
ing as follows

pat) = B+ e[z e)]+ -

fay= g7+ L fU=O]+

X(xt)s o + € ['u;"(x) + u"’(ﬂ,t‘-‘)]-*

(2t) . © + e[_—uz’(z)+ w (x,¢) ]+ -

bt t) P+ e[b"’(st,f)]+--~

ol

Wit . ks e[ hat)]+
o(0)

‘lo(z,é};- h

2

J Q)
Ae(’,t)= A;.)(z) + e[/\‘ &,t)]-}...

Where the subscript o refers to the slowly vaporizing propel-
lant. If one further assumes that the derivatives of the quan-
tities are of the same order as the quantities themselves and

retains only the lowest order terms, one then finds
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1) ) D ®) () M q
/+/;]+Q—;[ﬁ u+ p %, =0

[
2T @ w @ ¢ - ’,W
— u +- - _ =0
24 f; “ +£¢ ¢ V2L ¥ ]

(01,00 of® (,) (oJ o) (1) (0) o(°}
D ¥ N KPR £ sk )

(0 1°% () (o) s (® ol )
+ q?; [n"#/; “+p ( , A ) ]=
The orderings so far discussed are not unique and may even be
inadequate if more equations, such as those coming from droplet
drag and vaporization models, are added to the previous ones.
They are, however, consistent with the steady-state results of
this study. However, in the ordering for the steady-state per-
turbation it was assumed that the perturbation of the liquid
quantities (‘e /u" Al ) are of the same order as the perturba-
e R
tion of the gas quantities. This is simply an assumption un-
related to the steady-state study. 1In some engines, small per-
turbations are found to grow to full strength shocks in a few
cycles (as in some of the LOX/ethanol engine configurations used
in this study). This would indicate that the sources are strong
and therefore equal orders for the perturbation quantities of
both gas and liquid phases seem reasonable. 1In other engines the
growth of small perturbations occurs over many cycles indicating
weaker sources (or larger losses) and the assumption that liquid

perturbation quantities are of higher order would seem reasonable.

In this case one could visualize that the inertia of the drops



129

prevents them from changing their velocity as much as the velocity
of the gas changes (perturbation of q& of higher order than per-
turbation of % ). But one could conceive that the perturbation
of the drop mass is still of the same order as the perturbation

of the gas density (perturbation of £

{4
turbation of p ) since the vaporization rate is affected by

of the same order as per-

both relative velocity and gas properties (pressure). In this

case the lowest order perturbation equations would be

? 6@ P @ W)
e (Pt )+ ax (£7") =o

)
G /amz((”) + 2 _ﬁ_} =0
at ° A\ y

f l 9 0’ O‘N () { o(9/ '
; 0, p(' ‘3 '

Notice that, in this case, one has mass and energy sources in the

lowest order equations but there is no momentum source. Finally

one could go a step further and assume that also the perturbation
of the drop mass is of higher order. Then with no perturbation
of the liquid quantities, at lowest order, the perturbation ofA(

0
and of k should be put to higher order too, thus getting

9_% (f,m} X q?; (ﬁ,@) o) _ 7)
7 v) ,
b (T870) ?;.(r“

9 o (9 (,, w, (o} o) ¢
(Kb S 2 (rie g7 )

(78)

]
)

(79)
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Where the energy equation states that the time rate of increase

\ (1) \ . of®) (1)
of internal energy ( b ) and chemical heat addition ( % P )

within the control volume due to the perturbation is balanced by
w

" the influx of internal energy ( % ) and of additional chemical

(o) (o)
A uﬂv) and by the mechanical work done on the boundary

heat (f
uﬂ) . . .

( @w) ). Thus both the steady state density nonuniformity and

the steady state chemical heat released nonuniformity influence

the propagation of the perturbation. From the previous system

[}
one gets the following P.D.E. for u()

0) ,00)
() ") A
I utlt " Upy - (f"y‘o,_ Z‘U)) =0
2

Actually Adw is the heat of formation of the products from which
0

the heats of formation of the reactants should be subtracted to
obtain the chemical heat released. 1If, considering the approxi-

mations already made, one neglects the latter in comparison to the

o 10(°)
former, then ({ P( A ¢

p, ) could be considered approximately equal
)

to the steady state volumetric energy source which was found to

be approximately axially uniform (Sec. 3.3.3). Due to the non-

. * (0) ;o(%
dimensionalization it then turns out that .ﬂ =—Y and the

above equation for &a, becomes
)

(@ ) fé(ox ()
/4 - - ) = 0
jg 14 z('x c@l u 2
. 1) : . 0 (V) () _
while for b( one finds: f; p“ - b’ =0
*
Putting back the stars on the dimensionless quantities one has

0% ofor® o) ;o0 o ¥y 2
,;()*},o(’)= Je)( 40 = ‘& l’f = ﬁ( rf(""))a -y
o /W) B W) B H/p )

where the assumed constancy of Pk’ is used and it is further set
that the heat of formation of the products goes into latent en-
thalpy of the gas. If one had used pl’z 5.08p (see Sec. 3.3.3)
he would have found 1.2 instead of 7
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An earlier analysis led to an equation for 2{0 which did
not fully include the effects of the steady-state nonuniformities.

One can write the unsteady conservation equations isolating the

sources (neglecting kinetic energies) as follows
J /A (Pr)y = R
(Pu)e + (PW+ /)2 =¥
b+ r(bw),=7r§

one then finds that the following steady state ordering is con-

sistent with steady state results if Q.m, %/x/' _g,’/ are proper-
ly defined
ﬁv(
P = L z)
@)
x(x) = © + € % @)t
2 (%)
b(x)= |+ 0 tEh @+
]
Qo= © + € G, +
(t)
WE = o0 + © + €' B Gt

+ € gfij(l) + -

where the energy source now contains also the heat of formation

Going then to the unsteady perturbation, for the

of the gas.
case in which the perturbation of the liquid is assumed to be

of higher order than that of the gas, one would set

plat)= PG + € [ e)] + -
ulzt)= 0 + €[ ur+ 2" (2t)]+-

b(xt)= |+ €[ p(2,8)]+ -

gat)= 0 + e[ QV@m]+e [ gV (zt)]+ ..

w=t)= o + o +'€‘ZTng)ﬂr).+ gp(”/bgfjjff...
Flay= 0 + e[EW] + e [$%, 0)]r..
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and upon substitution and using the steady state equations one
would find
° (1) ()
(o) 2, _ 2 =0
X

L % (80)

where the effect of nonuniform chemical heat released has dis-
appeared. When one assumes that the perturbation of the motion
and of the burning of the liquid is of higher order, one simply
states that the motion and combustion of the liquid proceed as
in the steady state, i.e., there is no additional contribution
from the liquid due to the perturbation of the gas. However,
in steady state the energy added to the gas is not axially uni-
form due to axially nonuniform gas phase mixture ratio. The per-
turbation of this axially nonuniform steady state source is then
felt by the gas even though the liquid adds no extra mass or

. . o) ) avb°0v @)
energy contribution. Thus, terms of the form l% g B U

should appear even though perturbations of p , %, are of higher
e : 74

order.
_ The above variable-speed-of-sound wave equation was solved
for some typical /:of-: /f)(x) to get an idea of the influence of
the steady-state uniformity on the frequency of a periodic
perturbation.
Consider a combustion chamber of length approximately equal
to that of the active combustion zone ( L ). Looking for periodic

solutions, one sets

2 = V(=) etwt

Then substituting in the variable coefficient wave equations, one
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gets " e ©
U «+ w P (%) U-=o0
) . s
If = / . using the homogeneous boundary conditions one
would get

U=z Asinwx w=mT msil, 2, -

Thus the fundamental frequency would be

. a1 a
w=1r [or in cycles per second 4= @ . e = ]

(o)
Let f; (») now vary linearly from the injector to the nozzle
entrance and set the origin of the coordinates at the nozzle

entrance

NORUF u&
Then the equation to be solved is
U'e w (1+x) U =0 Uflo)=U()=0
By setting
w:%—w(wz)% U"""("O(%lea

the above equation is transformed into Bessel's equation
f A

.Y Lt 20)= 22 Yoy

w'u+wu'-(9—w)u=o u(Fw)=u(t w2 )=0

Hence the desired solution is given by

v ¥ Y2
U= [A Ty, (% W r+ay) + BZ/,(-;’-w(wr)yg] S (1+2)
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where A, B, w are still to be determined. Applying the

boundary conditions

AT (30)+ BTy (Fu)=0

A Tyy (20d)r8 Ty, (302%)=0
The above system has no trivial solution for A, B only if the
determinant of the coefficients is zero. Expressing Bessel's
functions in forms of Airy's functions ( A/ , B/ ) the above
condition, after some algebra, leads to the following relation-

ship
A (-2) B (-22) = B; (-2) A (-23) 2=

Both sides of the above equation are plotted in Fig. 27 and it
is seen that the first eigenvalue of > is 1.88 hence the funda-

mental dimensionless frequency would be

w= 23/"3- 2.54

In contrast, for the uniform steady-state case (J{Z;[), it was
found to be [T . This represents a 20% difference in the funda-
mental frequency.

Having the eigenvalue of (W = 2.54 one can express A as a

function of B
7"/3 (33' 2'54)
Toyy (3 254)

and now the solution becomes ( w= 2.54)

U(x)- B ih;/"(a +xyl[7_'z, (%w(l-c-z)%) ~ 1527 I’{, (3w ('*’)y?]]

A=-0 - —. 1527 B

where the amplitude B is undetermined. The above function is
plotted in Fig. 28. The constant 8 was so chosen as to give a

maximum amplitude ofIT(z) equal to 1.0. For comparison, Fig. 28
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gives also the function gu 2 which would be the solution of
the‘¢2) case. It is seen that the shape of the perturbation
velocity is similar in the two cases (for the fundamental fre-
quency). The two frequencies, however, were shown to be dif-
ferent and nothing can be said about the two amplitudes.

The linear variation of ﬁf» is not a good approximation
of the real steady-state density variation. 1Indeed the density
varies more strongly near the injector as Fig. 24 shows. An
exponential function is then a more realistic choice for Af%ﬁy .
With the origin of the coordinates at the injector, the proper
form for fo(o) is

f:,(") _ at.+ e?.e

Then the equation to be solved now is

coe

cx
U'+ w*(a*+ €'e )U =0 U(0) =T (1) =0
By setting ce/2 .
- 5 8w c. 2 laz' Ara
€= 20w < [ 4 P =T =

it is found that
" ! T 2t
TUU ' (H+ ST)U=°

Two solutions are sought of the form

&2 2mes
U(z)=) B, 2
The indicial :;Sation gives §= ¥ t LEI and the two solutions
are - zm,-}-i.’.E
LIH Zaa (-')m;cz"n. 2 ,,l }
=2 ¢ . )
.U;(E) Bo "'m" z'zn\.m! (a-wIEIX“"IEU'”(”‘*‘/{/)

~ o 1'"‘"':',5/
-"ly = “1) c™ 3

V(t)= 8|2 "+ / vrm!('-é/f/ﬂ"'@/)"'(“'i/‘e/’

ms
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The above two solutions are complex and conjugate. The general

solution would be
U=¢ U,+U

By choosing the two arbitrary constants ¢y S to be complex
and conjugate, ihe general solution takes the form:

U':/4t£f-8 U
where L& and U} are the real and imaginary parts of Uy . Re-
taining only the first terms of the two infinite series (for the
range of interest this approximation can be shown to be accept-

able) one gets

U’(z):A{m[lfl—k%]'[—"4'c-f%+ h‘)]-‘“" [’f,-&,;][4ci("+i‘ ]
+8 {c., [/f[iaj( a?|2 )" ]4-:.,.[[3[4’.2][, 4&(' T ]]

To have non-trivial solutions for A, B, the determinant of their

coefficients must vanish since we have homogeneous boundary con-:
P r .. oA /. p 2 - i
aitions on v at T, = 2+ W and "t.’ cow e . From this condition
the relationship is found
» ! c
o[- [pg]e —[elG e ()
cl 2
4ct(+ & )+ _@'e“’. )_._‘ Gew)(e+)

The above relationship determlnes the eigenvalues of ) since

a, b, c are known and p=2Wq. Specializing now to the two ex-

() .
ponential behaviors of"&() given in Fig. 29 and looking only for
the fundamental frequency (which is expected to be approximately

Tr ), the above relatlonshlp simplifies to the following one

w £
32+ w(8-28%)
For the lowest of the two exponential curves of Fig. 29 (1%:/ )

th~ w &% —

one finds for the first eigenvalue W = 2.86.



Sne .¢ 0385 7o

139

Assumed density variation
for the perturbation calculotions
1+2.5 e ~*X

Calculated density variation for
the first experimental engine
configuration(see table /)
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,'2 B .\.\O —
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8 . - I — A 1
"0 4 8 12 16 20 24
x (inches)
L 1 4 1 1 | ]
0 2 4 .6 .8 .O L2
X

Various steady state density profiles Figure 29
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For the highest of the two exponential curves of Fig. 29
(-Ct: 2.5 ) one finds W = 2.49,
These values of () are down 10% and 20% respectively from that
calculated without taking into account the nonuniformity of
the steady state. Having « one could proceed to determine B
as a function of A . However A remains undertimined. The
solution for -4’.:-/ , & = 2.86 is sketched in Fig. 28. The
constant A was so chosen as to give a maximum amplitude of

U (x) approximately equal to 1.0.

From the three examples of this section it could be con-
cluded that the nonuniformity of the steady state could lower
the fundamental frequency of a small perturbation by as much as
20%. The shape of the perturbation velocity is not changed
significantly (in the fundamental frequency).

An alternative, intuitive and simple way of calculating

I = P S U S W SR T, Al At S o s
L€ Irequency o1 uwne perlod...\. peIiTursacTicn ha

o)
e

-r‘
(1]
L

4]

=3 FaF=5o eiiftaaat
[+ T vwygyvw o L

(Crocco, as an application of the WKBJ method, personal correspond-

. )
ence, and Tsuji34). Having the following wave equation (){ = const)
) ! () °

- U =0
er = g N -4 ok
(]
Its general solution is known to be Zl{’)/?,f)= #(2 *‘f:() t)"‘}("ﬁ f)
0 -%
and ﬂf + is the actual constant speed at which the per-

(o)
turbation propagates. However, if ﬁ is not constant the general
solution of the above equation is not of thﬁ/form
% -/
( ) (@
Wixt)s #(2tp t)+3(z-f )

Nevertheless, intuitively, one could think that the wave is

b)‘?i
travelling locally with the speed f% and could calculate
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its dimensionless period by
! Y.
L 2% dx

This way one finds the following dimensionless periods ( ¥ )

and corresponding values of ) (in parenthesis the w’s

previously calculated)

f(.)"' 2-2 T=I0 w = 2.57 (2.54 )
? 4
/;H =i+€ Talw w=283 (2.8 )
-4x
f, =1+25¢ v=lts w= 25 (2.49 )

o

One can see that this simple way of calculating ) gives ex-
cellent results.

The result of this section is of interest in relation to
the frequency of shock-type longitudinal instability. Under
the assumption of uniform chamber temperature, one would expect
the frequency of the oscillating shock to be higher than the
acoustic frequency since a shock wave moves faster ihan the
speed of sound (e.g., for F;/pl = 1.5 the shock velocity would
be about 1.20 times the speed of sound) and gas velocity effects
cancel out over a cycle. However, hot firings show that the
frequency of the oscillating shock is close to the acoustic fre-
quency. This contradiction disappears if the assumption of
uniform chamber properties is removed. The acoustic frequency
calculated in this section with typical axially nonuniform den-
sity profiles is indeed some 20% smaller than that calculated
with the assumption of axial uniformity. In other words, the

longitudinal shock instability frequency as calculated with the
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speed of sound based upon the temperature for completed
combustion is probably accurate because of the cancelling of

the errors from two inaccurate assumptions.

3.6 Review of Some Droplet Distribution, Drag and
Vaporization Models

In Section 3.2 the variables of the gas and the dimension-
less liquid fuel flux (vl,./vl.',) were determined for three
specific Lox/ethanol engine configurations without assuming
anything about the distribution, the drag and thé vaporization
of the drops. Static pressure measurements were used instead.
Thus, after having measured some unknowns (first step in the
direct approach) and having calculated most of the others by
basic conservation equation (second step in the direct approach),
one should now investigate some possible models with the purpose
of selecting the model which best fits the already computed
solution (third step in the direct approach). Such an investi-

gation is undertaken in this

R BN
CCULLUIL,

i

The selected main goal of this section must be clearly
spelled out from the very beginning. The main goal was not
that of considering the most complete (and complex) of the
possible models. The main goal was, on the contrary, that of
finding the simplest schematization which would contain the main
physical elements and lead to reasonably accurate steady-state
calculations. The reason for this choice is that this study was
conceived to aid analytical instability studies where simple,
yet reasonably complete, steady-state models are needed. Thus

a specific engine configuration was selected (configuration II
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of Table IV whose %u=u(z), f=p(z) , T>T{x) and Wp/u/q, versus
%2 are given in Figures 9 through 12 and were curve fitted as
indicated in those figures). Quasi-steady droplet drag and
vaporization were assumed. The droplet surface temperature
was taken to be equal to the boiling temperature. The follow-

ing vaporization rate equations were studied

dy = - Ko (81)
dt 8r
[/

dr _ _ 4.3 P ,6!‘ * 82
dt am ] {82)
drv -_ % ph (83)
Jt Br
v = - % o (84)
dt gr

»
dy = X (85)
dt Bon

!

dr - _ [H.; /’ ] * .(86)
dt 8pn
dr = Kh (87)
o = _ & |

o
dv = - K (88)
dt T |

In some of the computations the factor .276 instead

of .3 was used following Williams? (then .276 &” = ,258).
The difference between the results obtained in the two
cases is small and no special effort is made to discuss
them separately.
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where

ho= anglu-uel /1o
I/3

o= 4Y/(9r-s) , ¥=122 = 3R =.28

Tﬂe effect of forced convection is absent in the first equa-
tion and progressively more important in the following three
equations. The fourth equation is herein investigated both

to assess the effect of a forced convection dominated vapori-
zation rate equation and because it would simplify steady and
unsteady combustion studies. Most of the study was done with
the drag coefficient either equal to zero (no drag) or with
Stokes's drag equation ( €>='Zﬁ4&_). But the case of higher

drag was also examined. Droplet breakup was not included.

Both the uniform and the distributed drop radius cases were
studied. 1In both cases, however, the initial velocity of all
dropswas taken to be equal (1Qb)' Some of these assumption mighf
be questionable,particularly if carried over into instability
studies, but it will presently be seen that, in spite of the
above simplifying assumptions, there are still enough uncertain
points which need investigation. Theories exist to evaluate

the K's appearing in some of the above vaporization rate equa-
tions as functions of the local chamber conditions (see Appendix
B). However, these theories are based on relatively arbitrary
schematization of what actually happens in a combustion chamber
and how the local chamber conditions should be used in those
theories also involves some arbitrariness. Furthermore, thesegk'g

set the scale for the combustion length. Thus a factor of 2
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error in estimating K brings about a similar error in the
estimate of the combustion length. For these reasons the above
K's were taken to be constant along the combustion chamber and
their values were so selected as to give the best agreement with
the already determined W}/&hp . Thus the above vaporization rate
equations have been treated more as probable functional forms
than self-consistent applicable vaporization models. Comparison
between the K's which gave the best results and those possibly
predicted by the corresponding theories were made a posteriori
(see Appendix B). The initial radius of the drops ( Ryo when
distributed initial drop radii were used) has an effect on the
computation of the combustion length similar to that of the ¥K's .
However, it can more accurately be estimated (at least for the
engine configuration presently under consideration) using the
equations and experiments of Ingebo (see Appendix C). According-
ly, its value was changed but only within the relatively narrow,
predicted limits. A listing of the models which were reviewed

is given in Table V. But before discussing them it might be help-
ful to anticipate the conclusions which have been reached.

The conclusion of this study has been somewhat of a surprise
to the author. The author had hoped he would find a more or less
unique model which agreed and explained the variables calculated
by the direct method and given in Figures 9 through 12. He actually
found either no satisfactory model or a multitude of them. If the
parameters Kl' K2, K3 and K4, appearing in the vaporization rate
equations, 81 through 84, are given the values recommended in the

literature (Appendix B), none of the models examined even gets
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close to representing accurately the engine under consideration.
If, on the contrary, one reserves the freedom of choosing proper
values for the parameters Kl’ K2, K3 and K4 (to which he is some-
what entitled, see Appendix B) and perhaps for 3o and the drag
coefficient, then he can make many of the examined models give
seemingly satisfactory results. This is so simply because he
generates enough degrees of freedom to meet his requirements. 1In
spite of this lack of uniqueness, it was possible to reach some
interesting conclusions. The models examined could be classified
according to the following criterion. At one extreme there are
those models which are controlled by the effect of the relative
velocity between gas and liquid drops and the dimensionless liquid
fuel flux yielded by them behaves like the dashed line in the
following sketch (Model A8 represents such an extreme, the drag

is zero so that 14¢=7Q5= constant and the relative velocity is
large, the vaporization rate equation is strongly dependent on the
relative velocity and the vaporization rate, far from the injection,

is further enhanced by the presence of the b(f term)

/¢
=
:\ ~
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At the opposite extreme there are those models which are con-
trolled by the effect of the drop radius and their W, /N,F
behaves as the dotted-dashed lines (Model D1 represents such an
extreme the drag is high so that the relagive velocity quickly
tends to zero, the vaporization rate is independent of the rela-
tive velocity and far from the injector the vaporization rate is
not even enhanced by the presence of the l/} term). In fact it
is found that it takes a relatively fine balance between the two
effects for a model to reproduce accurately the trend of the al-
ready known Nﬁ/@op. One then concludes that vaporization rate

* *
equations 86 and 87 with experimentally determined K, and K, (al-

2 3
most one order of magnitude smaller than those possibly predicted
by the theory) and a Stokes' drag equation are necessary to re-

produce satisfactorily the already known Np/ﬂ.' in magnitude and

trend. The use of the distribution function is not necessary,

although it does tend to improve the agreement. The proper initial

drop radius to use when a distribution function is not used is

’(,:5'&,,/3.4!5’ . In this study the typical drop Reynolds number is

of the order of 100 so that Stokes' drag equation might be diffi-

cult to accept. 1In the trade, much stronger drag equations are

used20 following Rabin28 who suggested accounting for the droplet

29 et al noticed no

flattening at high ﬁi . However, Eisenklan
flattening for‘_Ai up to 400 and actually suggested lower drag
for burning drops than for solid spheres. This work finds the
high drag results hard to accept and suggests agreement with

Eisenklan results.

Another result is that steady state calculations are very
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sensitive to the values of the key parameters such as R4, and
the K's . sStability results might be just as sensitive to

to those parameters. It would then follow that a model should
first be checked for its accuracy in predicting the steady state
in some specific engine configuration before it is used in sta-
bility studies. This work should be seen as one such check.

3.6.1 Summary of Models

‘MODELS: Al, A2, A3, A4 of Table V. All drops have initially
the same radius and velocity and vaporize according to vaporization
rate equations, 81 through 84. The drag is zero, the K's are con-
stant and they are selected as to give the best agreement between
the calculated and the directly determined wF/WoF' The initial
drop radius is 95 corresponding to the radius of that group of

drops whose collective volume (mass) is greater than the collective

volume of any other group of drops ( R =5 Q;./’LQIS ). The R30

Inax
was selected using Ingebo data (§5p T3, = 75L). The initial drop
radius of 75 p was also used but the trends of the nb=9fh case
can be obtained again by properly adjusting the values of the K's,
In Appendix D it is shown that for these models
WP/ Woe = (’t/'co)3

and #« is determined by the step-by-step integration of the vari-
ous vaporization rate equations with‘ut=1Qb = constant. The re-
sults of Models Al and A4 are given in Figure 30. A2 and A3 gave
intermediate trends.
Notice:

a) The overall burning rate is too low near the injector and

too high far from it. In these models the effect of the
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relative velocity is dominant. As long as the relative
velocity is low the combustion rate is also low, but it
increases quickly after a proper relative velocity has
been reached.

b) All the four vaporization rate equations gave essentially

| the same trend even though their functional forms are
quite different.

These models were judged unsatisfactory.

MODELS: Cl, C2, C3, C4 of Table V. As previous models ex-
cept that now the drag is different from zero. Stokes' drag
equation is now used: Cpwe 24/2& . Since the typical 4 in these
calculations is of the order of 100, Stokes' drag is still smaller
than that most authors would agree should be experienced by the

drops. In Appendix D it is shown that for these models
3
WF/WOF = (,l'/)(v)

and 4 1is determined by the step-by-step integration of the various

vaporization rate equations together with the drag equation

dUe _ 45k U-Ue £ Co = 24
dg Lt % o s U/

The results of Models Cl and C4 are given in Figure 30. C2 and

C3 gave intermediate trends. Notice
a) The overall burning rate trend is now opposite to that of
the previous models. The burning rate is too high near the
injector and too low far from it. By adjusting the values
of the K's one can obtain good agreement either near the

injector (proper local overall burning rate) or far from
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it (proper overall combustion length) but cannot obtain
“oth at the same time. 1In this model the effect of the
drop radius is dominant. The relative velocity tends to
become small and the effect of the radius becomes dominant.

b) All the four vaporization rate equations gave again similar
trends.

These models were judged unsatisfactory.

MODELS: Bl, B2, B3, B4 of Table V. As previous models
except 0¢ Cp< 34/&. No calculations were made for these models
but from the study of the previous ones one can conclude that
they could conceivably have yielded satisfactory agreement for
some proper selection of €, - This is because the previous two
sets of models gave opposite overall burning rate trends and dif-
fered only for their ¢y, - Thus some intermediate Cy, function
should give the proper overall burning rate trend.

MODELS: D1, D2, D3, D4 of Table V. As previous models
except cb>2t4h. No calculations were made for these models
but they should worsen the already unacceptable trends of the
models for which ¢ = 2f/21-. Increasing the drag, further decreases
the relative velocity and the overall burning rate tends to get
even higher near the injector and even lower far from it.

MODELS: C5, C6, C7, C8 of Table V. The models in which

Cp = 24/‘&‘ were judged unsatisfactory because of their high overall

burning rate near the injector. One way of reducing the burning
rate né%r the injector is that of making the K's temperature de-
pendent. 1In previous sections it has been shown that the steady-

state gas temperature is lower near the injector. It was thus
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assumed that the vaporization rate is lower where the tempera-

ture is lower. The K's were then taken to be proportional to

the local gas temperature (but the inverse of the density was
actually used) and were replaced by K*/p'swhere the K*'s are

new constants. This change achieved the goal of reducing the
overall burning rate near the injector and increasing it far

from it (see Figure 30). Models C6 and C7 (based on the modified
versions of the Priem and Heidman, and of Spalding vaporization
rate equations) were judged satisfactory and the dimensionless
liquid fuel fluxes yielded by them are given in Figure 31. 1In
conclusion a model using a uniform initial drop radius and velocity,
a Stokes' drag and a modified Priem and Heidman.or Spalding vapori-
zation rate equation has been found to represent properly the com-
bustion in the engine under configuration. However, the values of
the K*[f's are as much as one order of magnitude different from
those predicted by the theories (see Appendix B). 1In Figure 31

the results from the models which include the droplet distribution
function are also given although they will be reconsidered later.
It can be seen that the distribution function improves the agree-
ment but not in an essential manner.

MODELS: A5, A6, A7, A8, B5, B6, B7, B8 of Table V. It has
been seen that in order to get acceptable agreement when a uniform
initial drop radius is used, one should either use a c°<24/& and
one of the first four vaporization rate equations, or ¢y = 141/15_
and some of the second four vaporization rate equations. Both lower
drag and lower vaporization rate near the injector serve the purpose

of reducing the overall burning rate near the injector and
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increasing it far from it. Wwhen both effects are combined, the
correction is too strong so that Models A5, A6, A7, A8, BS5, B6,
B8 are not acceptable (see Figure 30).

MODELS: D5, Dé, D7, D8 of Table V. These models were not
explored, but on the basis of the above reasoning they could
possibly yield acceptable results.

In the other models of Table V, a Nukiyama-Tanasawa initial
distribution function for the drop radius was used. The intro-
duction of the distribution function did not change the nature of
the trends. It just smoothed out the differences making more
models acceptable or marginally so. However, a stretching of the
combustion length due to the slow burning of the largest drops

was noticed. Thus, in general, those models which with a single

initial drop radius tended to give too high an overall burning rate

far from the injector, i.e., the low drag, relative velocity sen-
sitive models, give now better results, the opposite being true
for the high drag radius sensitive models. Some representative
trends are shown in Figure 32. Discussions of the models involv-
ing the drop distribution function starts below.

MODELS: Gl, G2, G3, G4 of TableV . 1In these models it was
assumed that all drops have initially the same velocity but their
radii are distributed according to some specified distribution
function (soon to be identified as a Tanasawa-Nukiyama type). It
was also assumed that there is no nucleation or drop break-up so
that drops which initially have the same radius will always have
the same velocity (distribution function 4-?(2,1) ). Under these

assumptions the spray equation19 reduces to (see Appendix D)
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® 0% (uf'f)" %(R.{) = (90)

] which is equivalent to

dr - R R= de

dx Y ¢ it (91)
d f_,__[_ 2.8.-0-2_7:‘1-

T - w7 = (92)

where the second equation specifies the change of _{ along lines
dgfined by the first one. 1In these equations U, |, R and .ﬁ are
seen as functions of 2, 2 . 1In these models, the drag on a
drop follows Stokes' equation

due 3 & P 1Ml Ly 45k (uoue)

h - b A2
d= & % £ U P2, (93)
‘ and the coefficients IS Ky, Ky and Ky of the vaporization rate

equations are constant. Equations 91 and 93 determine ue’z"(",%,z'(,)
and ’Lct(z, to,%,)if u=w (%) and f:f{z) are known. Fortunately,
U=12%(=) and P=f(=) are known (Figures 9 and 10) through the
application of the direct method. While integrating equations 91
and 93, one can also evaluate the changes of .ﬂ by equation 92,
but some care must be used since in this equation R ang U must
be seen as functions of 2 and 4 . However, % is not explicitly
known as a function of 2 and 2 but it is implicitly defined as
» such by equations 91 and 92. Equations 91, 92 and 93 were numeric-
ally solved for the various burning rate equations (see Appendix
E). A number of observations can be made before answering the

question of whether these models are satisfactory or not.
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" Equation 92 can be written as follows

L D £ B
'F,(", %) o ¢

It can then be seen that while integrating equa-

tions 91 and 93 one can evaluate the ratio 4/{0
without having to specify ﬁ(qg). This means that

one can appreciate the influence of the selected
burning rate equation (91) and of the selected drag
equation (93) on the distribution function without
specifying the actual drop distribution function

at x=0 and valid for any drop distribution function

he may later specify at y=¢ . Thus, in Figure 33
through 36, thef@:s for the various cases are given.

It can be seen that when equation 81 is used (Figure
33), small drops burn much faster (inverse dependence
onnh ). Thus, at 5" from the injector all drops with
radius < 35k have practically already been burned.

On the contrary, large drops burn very slowly. Thus

at 40" the radius of the largest drops was reduced only
from 155 to 134 g . Or, to put it another way, at 40"
the number of drops having 134 p radius is still 30% of
the original number. The slope of the vertical lines
indicates the rate of decrease of the number of drops

of a specified initial radius: a small slope line means
fast rate of decrease. It can be seen that the slope
gets smaller as the radius gets smaller. Quite a dif-
ferent picture is offered by Figure 36. Here large drops

burn much faster and very small drops hardly burn
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at all. Here the burning rate equation is independent

of the drop radius and depends mostly on the relative
velocity; small drops tend to move at the local gas

speed whereas large drops tend to maintain their original
speed. 1In Figure 36 one sees that 12 g drops are still
present at 40" while the largest drop radius at 40" is
only 934 . In this case, the horizontal lines indicate
that at 40" the number of drops in all radii groups have
been reduced roughly by the same percentage. The number
of small drops is reduced mostly near the injector, due
to the high initial relative velocity, whereas the number

~Ff Tar
CI 2ar

7 far from the inijector.

In summary, fuel consumption that is high near the injector

and low far from it is calculated with vaporization rate
equation 81, The opposite is true for vaporization

rate equation 84.

The actual local distribution function ( f=f(=z2)) can

be evaluated if the initial distribution function

( &e%(@!()) is specified. 1Ingebo (Appendix C) measured
the drop distribution function near the injector under
LOX/ethanol firing conditions. He also correlated the
volume-mean drop size ( Q,o ) to orifice diameter and
relative jet gas velocity. An unusual amount of specific
information is then available to select the initial dis-
tribution function for the engine under consideration.

A Nukiyama-Tanasawa distribution function with rmax=155p

and r30 between SOF, and 70“ was then selected
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. A
fo(o,z,) = 4B e-s UE A %2 (95)
The local distribution function is then given in
Figures 37 and 38 for the case of Stokes' drag,
vaporization rate equation 82, and r = 70 p and SOF .

30
The quantity F, defined by

F = IO‘-' ‘):.(‘!,?-) (96)
[

is the local (at @ ) percentage of the initial

(at %+0) number of drops with radius between 4 and
12+ 10L (see Appendix C).
An interesting question can now be answered, will an

initially Nukiyama-Tanasawa distribution function re-

main the same throughout the engine? 1In general there is

no reason to expect it. If this were the case one

- 395 2 (x)
.ﬁ(x,-») =4 B(=) 2t e /'Lh

could set

and one should get straight lines (of varying slope
and intersect) from the following function when

evaluated at several 2's
3.5
A ¥(z,z)]= L [48(x)] - ___q_(’___
2t 4o
Figure 42 shows that one does get straight lines when

the vaporization rate equation is equation 84 (if very
small drops are not considered). The other three burn-
ing rate equations did not quite give straight lines

(see Figures 39, 40 and 41).
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A model which involves the distribution function is
adequate if the local dimensionless fuel flux as
calculated by it agrees with that calculated by the
direct method and given in Figure 12. Having the
distribution function £=F(ga) satisfying the spray
equation 90, it can be shown that the dimensionless
fuel flux can be evaluated by either one of the follow-

ing two expressions (see Appendix E)

R(x)
W, | ax 2
_J,(_.:-)= 4P R L dr (97)
dx \ Wog /AWy
(]
r (%)
= <i¢vz?f D% 3:*,
M AW | 3TER (98)

An excellent check is then available on the overall
validity and accuracy of any given solution. The

above two expressions must yield the same (“?//“Qp )

for all 's. Calculations show that when 'ue is con-
stant the above check is met exactly whereas in the more
complicated cases in which ﬂi is a function of both 4
and 2 the above check is met with decreasing accuracy

as X 1increases, but is still more than adequate for

the purpose of these computations (one can hardly dis-
tinguish V;/uh,calculated by equation 97 from that

calculated by equation 98 in figures like Figure 30).




172

The basic question of whether these models are adequate
or not can now be answered with the help of Fiqure 44. As this
figure shows, all the four vaporization rate equations are satis-
factory for the first part of the engine, but tend to give too
long a combustion length. Alternatively, by properly selecting

the values of Kl’ K2' K, and K4, one could have had good agree-

3
ment on the combustion length but then the combustion as calcu-
lated by these vaporization rate equations would have been much
too active near the injector. In conclusion, these models are

not completely satisfactory. Before going to other models, it

might be pointed out that the values of the constants Ky . K2,

nd X, and of 2. have a strong influence on the overall solu-
tion. This is adequately demonstrated in Figure 43.

MODELS: G5, G6, G7, GB8 of Table V. The previous models are

not quite acceptable because they give an overall combustion rate

which tends to be too high near the injector and too slow far from
it. Thus, if instead of using the K's one uses theK*/f's, as in
Models C5, C6, C7, C8, one can expect a better agreement since the
substitution achieves the goal of reducing the vaporization rate

near the injector and of increasing it far from the injector.

‘Accordingly, the vaporization rate equations given by equations

85 through 88 were used again, together with a Nukiyama-Tanasawa
initial drop distribution function and Stokes' drag. Figure 45
shows that now all four vaporization rate equations give satis-
factory results. Vaporization rate equations 86 and 87 could
possibly be selected as those giving better results while vapori-

zation rate equation 88 might still be considered acceptable and
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it is attractive for its mathematical simplicity

dv _ _ K%
it g | 2-ue (99)

It can be shown that with this vaporization rate equation and
with &= 24/& closed form solutions of the spray equation can
be obtained for some specific u=u(®2) functions.

MODELS: El, E2, E3, E4 of Table V. 1In these models, a
Nukiyama-Tanasawa initial drop distribution function was again
selected and the spray equation was solved but with the further
assumption of no drag (all drops move at constant speed) and with
the vaporization rate equations 81 through 84. Figure 46 shows
that vaporization rate equations 82 and 83 would give again
reasonably good results. Indeed in these models one has again
decreased the overall burning rate near the injector and in-
créased it far from it. This was achieved not through a modifi-
cation of the burning rate equations, but through a modification
of the drag equation. The setting of ‘ufrb% = constant is the
limiting case of an extremely weak drag. Parenthetically, notice
that the assumption of constant drop velocity also improved the
result obtained with the vaporization rate equation 81 in which
the relative velocity does not appear at all. This is because
the space rate of change of N still depends on %, (Equation 91)
and so do the distribution function (Equation 92) and the dimen-
sionless fuel flux (Equations 97 or 98). Also notice that the
vaporization rate Equation 84, which depends heavily on the rela-
tive velocity, now gives too high a rate of overall combustion

far from the injector.
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MODELS: H2 and H6 of Table V. 1In these models a Nukiyama-
Tanasawa initial drop distribution function was used, and the
steady state eugation was solved for the case in which the drag
of the drops is higher than that given by Stokes's equation.

The following drag equations suggested by Rabin28 were used

= 27/ R Ae < 8o
217
cp = 21 A e » 8O

Vaporization rate gquations 82 and 86 were used. The dimension-
less fuel fluxes thus calculated are given in Figure 32 and they
are seen to exhibit the behavior characteristic of the high drag
model high burning rate near the injector and low far from it
due to the low relative velocity which is quickly established
thanks to the high drag. There is no way of matching the direct-
ly determined WP/W.F by varying K or K* or 43, . Model H6
(and Model H7 which was also calculated) gave marginally accept-
able results due to the factor b/f which increased the vapori-
zation rate far from the injector, thus partially offsetting the

effect of the high drag.

3.7 cConclusinns for the LOX/ethanol System

The following conclusions about the steady combustion of the
LOX/ethanol system have been reached through the experimental and
analytical work presented in the previous section. Extension of
these conclusions to other propellant systems must be made with
care. The main conclusions are:

1) The problem of steady rocket combustion is particularly

suited for the application of the direct method. Droplet
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drag and vaporization processes are anything but com-
pletely understood. By the application of the direct
method, most of the gas variables can be determined
using only static pressure measurements and without any
droplet drag, vaporization and distribution models. 1In
the process the main assumption becomes that of instantan-
eous chemical equilibrium of the reaction products. This
assumption can hardly be avoided whether one uses the
"direct" or the "conventional" approach (3.0).

The assumption of instantaneous chemical equilib-

rium of the reaction products has been found to

lTead to good results (for the LOX/ethanol system)
(Section 3.3.2).

For chamber pressures between 150 and 600 psi, injection
equivalence ratios between .9 and 1.9 (O/F by weight
between 2.32 and 1.1), and nozzle entrance Mach numbers
up to .55 the steady state of the LOX/ethanol system can
be determined by solving three algebraic equations con-
taining six unknowns ( p, W, b, W, Wy {('C/u, ). One

of the unknowns is the flux of liquid oxygen (wg ) and
can be set equal to zero for most of the engine. A
second unknown is the ratio between liquid drop velocity
and gas velocity (‘ﬁ;/tb ) and can be estimated at
various distances from the injector. The influence of
i;/1& , although not negligible, is not very large so
that estimates for it are sufficient. One is then left

with three equations in four unknowns ( P, u, [:l We ) and
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the measurements of one of them (usually the static
pressure, p ) is sufficient to determine the other
three. Among the variables thus determined is the

flux of liquid fuel (Wg ) which is of great interest
for the study of combustion efficiency, of the relation
between mass and €nergy sources, of droplet drag and
vaporization mocdels and, possibly, of combustion sta-
bility (Section 3.3.2). sSimilar equations could be
obtained for other propellant combinations and should
be of practical use.

One of the most important findings is that the steady
state of the LOX/ethanol system can be expected to be
anything but axially uniform in engine designs of prac-
tical use. This finding probably holds true for most
LOX hydrocarbon systems as well. Gas pressure, tempera-.
ture, density, average molecular weight, speed of sound,
composition and ratio of specific heats, all exhibit
axial norruniformities of diiferent magnitudes depending
on injection mixture ratio, chamber pressure and nozzle
entrance Mach number (Section 3.3.5). The only variable
which shows axial uniformity (at low nozzle entrance
Mach number) has been found to be the volumetric energy
release, i.e., the energy added to the gas per unit
volume of the combustion chamber (Section 3.3.3).

When the axially nonuniform steady state was subjected
to a small amplitude periodic perturbation, it was found

that its frequency is about 20% smaller than it would
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have been had one assumed a axially uniform steady

state (Section 3.5). This explains why the frequency

of the shock-type longitudinal instability has been
measured to be close to the "acoustic" frequency (based
on the axially uniform steady-state assumption). A
shock-type wave should exhibit a higher frequency than
the acoustic one. 1Indeed it does, it is the acoustic
frequency which has been overestimated by assuming
steady-state axial uniformity.

Relevant to theoretical studies of instability is the
finding that, in steady state, the effect of droplet
drag on the momentum equation of the gas is probably
higher than (or at least equal to) the effect of
vaporization (Section 3.3.4). Then there seems to be

no reason for neglecting drag terms and keeping vapori-
zation terms in theoretical instability studies. If
anything, it would seem more consistent (and mathe-
matically simpler) to neglect both (Section 3.5).

Also relevant to theoretical studies of instability is
the finding that the quantity P/}hug overestimates the
actual internal energy of the gases by as much as 25%
(1f the complete combustion value of Y is used through-
out the engine). Wanting to express the internal energy
by k/?(f'O . a x’somewhat higher than that corresponding
to complete combustion is suggested (to account roughly
for the fact that the specific heats of the products

change as the temperature goes from its reference value
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to its local chamber value). For LOX/2thanol Y= 1.23§
rather than ¥» 12/ is suggested (a 12% difference in

(¥-1) ) (section 3.3.3). Perhaps more important is

the finding that the €énergy source is not proportional

to the mass source due to an axially varying gas mix-
ture ratio (Section 3.3.3). The ratio of the two sources
can be expected to exhibit the same degree of axial
disuniformity that the gas variables exhibit since they'
are both related to the axially varying gas mixture

ratio (Section 3.3.3).
The one-dimensional approach to the study of the processes
occurring in the first few inches near the injector is
hardly justifiable. However, some conclusions were
reached which are believed to be correct and of practi-
cal interest. The static pressure has been found to in- .
crease in the vicinity of the injector before decreasing
below its injector value. The initial momenta of the
liquids are responsible for the increase. The point

at which the liquid velocity is equal to the gas velocity
(%=W ) is further from the injector than the point at
which the static pressure tops off after increasing
(Section 3.4)
The initial momenta of the liquids should not be neglec-
ted in steady-state computations. Their contribution to
the accurate calculation of the gas velocity is important

throughout the engine (Section 3.3.4).

g W ———- ———

L e g e
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The previous conclusions have been reached without
specifying anything about the distribution, drag and
vaporization of the droplets. Some possible models

for the distribution drag and vaporization of the drops
were then studied. It was concluded that a Nukiyama-
Tanasawa initial drop distribution function, a Stokes'

drag and either of the following two vaporization rate

equations
L] V ‘/
v ke 3
-J——- =~_2 [l+.3 P; @, Modified Priem-Heidmann
dt 8pa,
» {
i‘f‘. =_ ;s " Modified Spalding
dt gpn

Reproduced accurately the steady state of one specific
LOX/ethanol engine configuration (Configuration II of
Table IV) but no droplet breakup effect was included.

It must also be noted that the coefficients K*2/ e

and K*3/j’ represent somewhat arbitrary modifications

to the vaporization rate equations suggested by Priem-
Heidmann and Spalding respectively. Had one used those
vaporization rate equations in their original forms, he
would have reporduced very poorly the actual steady state.
He would have overestimated the overall burning rate near
the injector and underestimated it far from it. He would
have concluded that most of the propellants are burned

in the first few inches and the remaining linger on at
length while the direct method revealed a combustion
axially more distributed. It was also found that the use

of the distribution function is not really necessary,
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although it does tend to improve the results. The
proper initial drop radius to be used when a distri-
bution function is not used is %= §23,/3.915. 1In this
study the typical drop Reynolds number was of the order
of.100. Nevertheless Stokes' drag equation was found
to give better results than higher drag equations. 1In-
deed higher, drag equations could have hardly been
judged acceptable without substantial modifications to
the vaporization rate equations. 1Introduction of very
specific droplet break-up processes couldhave possibly

made the higher drag models acceptable (Section 3.6).
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4.0 UNSTEADY SOLID PROPELLANT BURNING

This author has recently30 become aware of a procedure,
introduced by Ya. B. Zel‘dovich31 in 1942, to study unsteady
solid propellant combustion. This procedure has since become
widely used in the Russian literature. It actually represents
an application of the "direct" method although it is generally
viewed as an intelligent trick to solve a particular problem
rather than a specific application of a general way of solving
physical problems. Both the "conventional" and the "direct"
(Zel'dovich) approaches to the study of unsteady solid propellant
burning are here briefly reviewed. The emphasis is on the com-
parison between the two approaches rather than on the discussion
of the problem of unsteady solid propellant burning. The work of

C. L. Merkle, S. L. Turk and M. Summerfield32

will be closely
followed in presenting the "conventional" approach to this problem.
Consider a one-dimensional, semi-infinite, homogeneous solid

propellant which is burning steadily. At tee , the pressure becomes
a specified function of t , k-}(ﬂ,(hmn for example, to depressuri-
zation. The problem is that of determining the resulting unsteady
burning rate £=tlﬂ. The physical system is made up of a solid
phase, a gaseous phase and the common interface. The characteris-
tic times for heat transfer, chemical reaction, and mass diffusion
in the gaseous phase are found to be two to three orders of magni-

tude smaller than the characteristic time for heat transfer in the

solid so that the gas phase can be treated in a quasi-steady manner.
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Fixing the coordinate on the regressing surface of the

solid one can then derive the following equations

T oy T 2T '
XP,) > * f;,‘, 'l-(t)q"; = fﬁc ;)-Z_- Eiﬁe:g){igonservatlon
E bal t
- Xﬁ (,?'5: ): *3 Z(f)f} qs - ), (72}- 5,9 sgiig)—,ga: ?gizr;ace
4 (]

2 T . Energy conservation
X’,j—-l]-;d- f*'l.C,é-;-bQ#Gf’go in gas
where T = temperature
'\’.9 = thermal conductivity of solid propellant, gas
-’h’ = density of solid propellant, gas

; Ch, = specific heat of solid propellant, gas {at
| constant pressure)

|
‘. { ) = evaluated at the solid propellant side of the
| 4 solid-gas interface

f ( ) = evaluated at the gas phase side of the solid-
1 % gas interface

Q,“ = heat released at surface, in the flame

[ 3 = rate ofproduct generation

2(t) = burning rate
in the third of the above equations use has already been made of

the quasi-steady gas phase assumption, which also implies that,

in this equation, the burning rate %4 should be considered con-

stant. 1In both the conventional and the direct methods, the

third equation is then a steady-state gas phase energy balance.

In the conventional method one then formulates a model for the

steady-state gas flame and solves the third equation for JT/Jx

‘ on the gas phase side of the solid-gas interface. This derivative
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will be a function of » and F which appear both explicitly

and through £

Having this derivative and substituting it into the second

equation one finds

(‘71),,,.: #(n4)

7 x
The first equation can now be solved for &lt} . Indeed the

problem is now reduced to the solution of the heat equation given
the boundary conditions at the solid-gas interface (d: f{l,}))
and at infinity on the solid side (-Eb ). For any given value

of f: there will be a value of & which satisfies both the first
'S
2 {

3 T . . - ) '
equation and its boundary conditicns and the desivred < <) .

()

given Psb(b) , 1is thus determined. Notice that in the actual
application of the conventional method experimental results con-
necting the steady-state burning rate to the pressure for a given
propellant temperature ( Tee ) are actually used to supplement the
lack of information about the actual steady-state flame structure32.
Thus, even in the conventional approach an experimental function
of the type L'L(p,Ta) is used. Zel'dovich proposed to do
away completely with the problem of the steady-state flame struc-
ture and to determine the steady-state ¢ -function by an additional
set of steady state measurements. 1In steady state d can be ex-
pressed as n
?= “/05

where T, is the burning surface temperature and 1; and T,. can

(Ts-Tw)

be eliminated in favor of ﬁ, R if, besides measuring L"!-(P, T")

one also measures &= \.(T,’b).
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Thus, the "direct" use of measured quantities splits the problem

of unsteady solid propellant burning and its quasi-steady gas
flame into two problems which can be analysed separately (Split-
ting Property). On one hand there is the problem of the unsteady
burning of the solid propellant which can be studied independent-
ly of any gas flame model and on the other hand there is the
problem of the structure of the gas flame which could also be
studied using the experimentally determined ¢=¢(ﬁ,ﬁ)(but this
part of the study does not seem to have been performed). However,
in this particular case the equations are split also in the con-

ventional approach due to the quasi-steady gas phase assumption.

split.This solution of the problem of unsteady solid propellant
burning is not subject to the validity of the flame model but only
to the assumption of quasi-steady gas phase (Assumption Splitting).
If the results obtained with the direct approach of Zel'dovich
were found to be in disagreement with further experimental data
(say, of stability of the solid propellant combustion) one would
have either to declare the gquasi-steady gas phase assumption in-
correct, or check into the accuracy of the measured ¢v ¢{4,))
since only basic equations were used (Experimental Data Check).
This particular application of the direct method is one in which
the maximum information property of the direct approach is well
exemplified. The complete problem consists of both solid and gas
phases and a complete model would require not only the solution of
the heat equation in the solid, but also the determination of the

flame structure in the gas. Thus, after having gone through the
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first two steps of the direct approach (namely i ) collection
of experimental data 1ii) solution of basic equations using
directly experimental data) one should go to the third and last
step of determining a complete model. But even before going
through the third step (i.e., while the structure of the flame
is still unknown) a wealth of information of practical use on
stability, ignition, reignition, etc. of solid propellants has
become accessible simply through the study of the restricted
solution (as in the case of the steady-state combustion of the
LOX/ethanol system). Some of these studies have recently been
collected into a single publication33 which should become avail-

-

[ . TAA
aptie 1n 1v9/vu.
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APPENDIX A: ONE DIMEMNSIONAL CONSERVATION EQUATIONS

Consider a fluid made up of gaseous reaction products and

drops of liquid fuel and oxidizer. If one assumes that:

1) It is sufficient to consider some average velocities

for the two liquids
2) Negligible friction and heat transfer effects
3) The volume of the liquids is negligible

Then the following conservation equations can be written

Z(reo) e 3k (pus prs *hye) =0

2
—

l
op (Put %t ') + o5 21+ *ia ™
B[Pl Erh)rp(Arde k) s g (ner B+ b )]s

[fu{e+u+l. )*/p A (A,f Bs+/., )+c (Ag+ _ru,')ﬂ,u],,

The steady-state equations of Section 3.2 are obtained from
the previous ones after integrating them from the injector to any

station
fu=-[v';-%p+w—wc¢]
pu= '[P‘l’ + Wl — Vo Uy + Wy Uy — Wou Uy |
puhen S ERIL (AF+J+‘I )- wo,(/\,,+_r+4,)
VS I SN
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If one assumes that the temperature of the liquids go instan-

taneously from their injection temperatures ( T' . ) to their wet

bulb temperatures relative to some average chamber pressure (7; ).

L4
- he would then get for /‘o Jded the following expressions

(A
Ao‘_' = - [C (Tv-n)* x-f c’(To-n)Jﬂ’jc_[Jo*c(Tgn)]F,‘

A;’¢ 8—[ l\f‘$(T.-TV)JF’.‘-‘-"'[AO'?C(TO-";ﬂﬁ’

thus recovering the equations of Section 3.2.
Some considerations on the constancy of the steady-gtate
latent stagnation enthalpy of the gas can be made rewriting the

previous energy equation as follows21

e+}l+§g=—[l,°+ % (A + U +I.,)— Y (At Bee 447 )+
2 0 Wo
+ ‘.;.f‘t‘.(/\ﬁl‘f.;h,)- "t Ay oy by)]

Where the left hand side is the latent stagnation enthalpy of the
gas and the right hand side can be called the energy source for
the gas. This source would be the energy actually made available
to the gas, i.e., the chemical energy released minus the energy
taken up by the vaporization processes and the kinetic energy of
the liquids. Setting (A;*-‘-‘f):(Aq__#-:‘-:;) and (/\'-f'_‘i;)s(,i,y-r Yoy
(which means that the energy taken up by the unit weight of liquid,
to warm up and vaporize and move, is constant with x ) the pre-

vious equation gives

eo s Wan [1e ) A r Kor 41y ) OO 1y 1 vl 4y )]
!’

which shows that the latent stagnation enthalpy of the gas is
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constant with 2 when the vaporization process is such that at any
distance from the injector, equal fractions of the two propellants

have vaporized. 1In this case one could set
WF_W,F‘ Wy - Woy
Yo Wo'
and the previous equation becomes
:! 2 0
¢+-—+ = - [L (M"J" ﬁ) “b’by "'i"" ’)

o
and h would be constant, since the composition of the gases is

cd(x) » puz-(wWo + Woy)ol(x)

0%’

constant, l'f)¢ are constant by definition and (A+ :')rf re
constant by assumption. Another case in which the latent stagna-
tion enthalpy of the gas would be constant is when both Lo = const.
and (/\;-tu'.'-’op )= (Ak«l- 294"’ )= (Ad"‘ ‘*"d) (A0,0- —-”4—‘»,) = const.
in general, however, the latent stagnation enthalpy of the gas can
be expected to change With the distance from the injector even in
steady state. |

The steady state energy equation as used in the actual numeri-
cal computations, was written in a slightly different form. This

alternative way isolates the chemical energy released rather than

the net energy source for the gas

1 (c + -;3+ g{‘),-{[guho+(w,-wap)l.':,.p(w,-w,,)j,‘;].,,
¥ (At NE) - wo (At 53 )+ wy Ay # 2% ) oy (g + 254

where the term in brackets is the chemical energy released (dif-
ference between the enthalpy of formation of the products and that
of the reactants) part of which goes to warm up, vaporize and move

the liquids but most of which acts as energy source for the gas.
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This term was replaced by -[uy" where 70 is given by

f’: - wm ( ”zu - ( “193 )F Z( “‘")ﬂ]

Ctl
<™
To verify the equivalency between the two expressions for the

term in brackets, one recalls the definitions of 'm"‘ and &
0” L p‘f ?/M
- ¢ (e M)t (Weg-t0) S
(WOF-W‘) (UQ;"’“’)/MF

Me (Yo Vo) [ 7 Mem = M
i My (Wo,-Wr)

and substitutes them 1n the definition of ?o

_fu? ,u 4,186 ,0 Z x (“t") f 9. IS‘”’(””‘)‘ Pu 4. IB‘ID (H"‘),
mﬂq Y
10
- ru Lo- . 4,18 © ("'F'”%'X”o ) ~pu 4.:8610(“, w)_g_(ﬁ__ ”"lL

78 4 ™,
= PuR & (We-top) b + (W -tg) by
Thus the steady state energy equation can now be written as
P (B0 B o= [oh (Ao® 2 pr e 365 ) s (g2 )

for the numerical computations the following definitions were

ij C,‘.(T)JT]

(’I

further introduced

c+-t= 4-'8‘.9 {
! Mem

Qrg = [(l'+ ¢(1°-To)- 5.7 ( Yee (1) F, ¥

—-—

a
<
N = -\Ab;?i;:( B«rwpu’-fwv.‘-‘t
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By which the energy equation, as used in the numerical computa-

tions, is obtained

10 T o
f“%ﬁ [ c): X j,,c'*'mh* (Haos): )~
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APPENDIX B: COMMENTS ON THE DROP VAPORIZATION RATE EQUATIONS

In the first section of this appendix, the origin of the
vaporization rate equations used in this study is briefly sum-
marized and the theoretical values of their coefficients are com-
pared with the values which gave satisfactory results for the
engine under consideration. 1In the second section, some conclus-
ions are offered.

1.0 The following vaporization rate equation was studied

d m K £ 4 2 consTRAN.
R= b 2 o K g0] 0
4ampet 8 R = 2pr[u-uef 4
Actually cnly several particular cases of the above equation were

studied. The following four cases were then selected as sufficient-

ly representative and studied in more detail

Re- K /84 (l1a)

gs- K1+ .27 e/ Z‘J/az (1b)

Rz - K3 ,&'A/aa. : (1c)

Ra\— ky Ao /82 (1d)
Equation la. This equation in the form

R P CY LA SRR |

in which case

e et s e ]

.9
can analytically be derived under the following assumptions :
One dimensional, spherically symmetric system, no forced con-

vection ,

Steady state.
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No oxidizer on the surface of drop,

Constant énd uniform drop temperature (equal to the
boiling temperature).

No fuel in the ambient atmosphere,

fb = yc' = constant ( L¢ = Const and pD independent of
drop distance).

The burning rate given by this equation was found to agree
well (within a factor of 2 for k;) with measured burning rates,
in controlled experiments (mostly in ambient air), The para-
meter K, was found9 to be of the order of 10_2 cmz/sec. kK, .
for the engine under consideration, near the injector (say at 4")
where there is plenty of hot gaseous oxygen (say )g_., = ,9;

[ J

T = ZOOOOK) and the relative velocity is small,is now evaluated.
14

It is set

i = 6630 cal/g (Heat of reaction per unit mass of fuel
vapor)

[The reaction under consideration is:

CoHg Ol + 30, — 3H,0 + 2€0,
Then the heat of reaction per mole of GQHgOW  is:
3(57.798) +2(94.04) - 56.24 = 305 Kcal/mole
Hence § = (305 000 cal/mole)/46 g/mole = 6630
cal/g]

(¢ =2.09g /gfuel (stoichiometric mixture ratio)

oxidizer
= X =  32x3/46x1 = 2.09
Le nn'xannt/h"7 ﬁhbkv / :
G = .34 cal/g °k (Specific heat)
[Computer Calculated for the engine under con-

sideration at 4"]
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T. = 2000 °k
[Computer calculated for the engine under con-
sideration at 4"]

= 1.2 10™% cal/em sec °k (Thermal conductivity)
[Evaluated at 1500°K (see Lorell, J., Wise, H.,

Carr, R. E., J. Chem. Phys. 25, 325 (1956)]}

{ = .8 g/cm3 (fuel density)
L. = 136 cal/g (Latent heat of vaporization per unit
mass of fuel @p = 300 psi)
12 = 454°k (Liquid temperature = boiling temperature
@ p = 300 psi)
xé.. = .9
from which one can evaluate k; to find: K, = 1.15 10_2 cmz/sec.

The comparison with the K's and K*4>'s (evaluated at 4" where

3 g/cm3) which gave the best agreement between the

P = 3.4810
calculated and the directly determined Mu‘/nhp . for the various
drag coefficients, is given in Table VI. The agreement is seen to
be satisfactory. Notice, however, that a vaporization rate equation
of the form Jt/Jt: —“/8-., ., which does not include any forced con-
vection effect, is not very realistic for the engine under con-
sideration where & is of the order of 100 even in the case of high
drag (low relative velocity).

Equation 1b. This equation was proposed by Ranz and Marshall22 who

found it to correlate well with vaporization rates in conduction
and forced convection experiments (osﬁszoo) but without combustion.

They used drops of various liquids in air at temperatures up to 220°¢c
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with 300§ 2 € 555} and the temperature of the drops was close
to the wet bulb temperature. The term .276 Pty’,ey" (actually

'
.35£’AL1)%22was intended to be a correction factor due to the
forced convection to be added to the pure conduction vaporiza -
tion coefficient. Thus, according to this theory K, = K, =1.15
10"2 cmz/sec. From the results of Table VI one concludes that
the theoretical vaporization rate coefficient is roughly five times
higher than the experimental one (the combustion chamber length
calculated with the theoretical vaporization rate coefficient
would have been roughly five times shorter than the actual one).
This vaporization rate equation is herein referred to as the Priem
and Hpidmann23 equation since they introduced it in the liquid
propellant engine problem after having modified it to account for
the difference between the chamber pressure and the liquid drop
vapor pressure.

Equation lc, Spaldin924, using stationary porous spheres (most-

ly of 1" diameter) and moving air at room temperature found that
the following vaporization rate equation fitted satisfactorily
his measurements (800 R. = 4000)

° ¢ y" '/2.
m o .s:[ $ (™), ¢ Y. YA (4)

- L ‘L

o !
In this equation M  is "taken to be the mean rate of mass
transfer per unit area times the diameter" thus

m e L ma2n

4mal
nd
: .§3 o 4 c‘(T..—T,).'_ _?_'_y ¥
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And using the coefficients previously given (and gk = 8 10_4 g/cm
sec)*, one finds Ky = 1.45 10_2cm2/sec which is more than one
order of magnitude larger than that giving the best agreement
between the computed and the directly determined W%//ﬂhp .

Equation 1d. This equation could be visualized as representing

a vaporization rate even more strongly affected by forced con-
vection than the previous ones.

It might be worth noting that the same K 's and K;?'S gave
the best results in both the uniform and the distributed drop
radii cases (see Table VI and recall that in the uniform drop
case to =5 %, /3.915, i.e., the drop group in which most of the
mass is concentrated was used), thus indicating again that the
use of the distribution function does not change substantially
the nature of the results. Also one shwuld notice that the cal-
culations show that in order to obtain good agreement with the
directly determined Wg /4%7, the factor multiplying, for example,

s VL

[ 4-.3’1 X ] shouldn't be constant but actually should increase

3

with 2 starting, say, with a value of 2.5 10 cmz/sec at 4.

* -
A constant viscosity coefficient of 8 10 4 g/cm sec for the

combustion products was used throughout the computations. The
range of temperature of greatest interest is 2000°K = T == 3200°K
so that, the viscosity coefficient can be expected to vary by
(3.2/2)% = 1.264 or approximately 11.5% from its average value.
Moreover, if the varying composition of the combustion gas is
taken into account (as T=2027°K the calculated main gas products
are (mole fractions): 05 (65%), CO5(13.9%), Hy0(20.9%); while at
T=3174°K: CO (25.7%), CO,(12.7%), H,0(44%)) one finds that the
viscosity coefficient is 710= p = 840 10-4 g/cm sec with a
slightly smaller variation than that predicted Ey the square

root temperature dependence. A value b = 8 107" g/cm sec was then
selected because the higher temperature region is of higher interest.
It was not judged necessary to consider a varying p due to the
presence of more far reaching uncertainties about the drag and
vaporization models. Similarly the specific gravigy ( ﬁ_) of the
liquid fuel was kept constant and equal to .7 g/cm”.
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The theoretical value of this factor on the contrary would

2 cmz/sec and probably de-

start from a higher value of 1.15 10~
crease with x . This is because, in equation 3, the factor

' Y,”o/.,' probably decreases more rapidly than the factor

% (To -T,) increases (but the value to be assigned to Yo, &
becomes quite arbitrary). Thus the overall burning rate, calcu-
lated with the theoretical K , would be much too high near the
injector and much too low far from it.
2.0 The main reason for briefly reviewing the origin of the

vaporization rate equations which were used, is to emphasize

that both the theoretical conditions under which they were derived,

and the experimental conditions under which they were verified,
are indeed quite different from those occurring in rocket engines.
Composition, temperature, density, etc. of the gases within which
a drop burns in an engine change considerably within the life time
of the drop and so do the relative velocity and the Reynold's num-
ber. Even after accepting the assumption of quasi-steady droplet
burning one still does not have enough experimental data to check
the validity of the burning rate equations corresponding to the
entire range of situations to which a drop is exposed in an actual
engine.

It is then reasonable to conclude that the vaporization rate
Equations la, 1lb, 1lc and 1d are to be interpreted more as possible
functional forms to be tried out in an engine, than as exact, or
even approximate, relationships. This is to justify the freedom

which was used in these calculations in the definition of the K's

and Ké's. This also helps emphazing the need for stability studies
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to be based on vaporization rate equations whcse capability of
giving correct steady state results have been checked. Thus,
while the theoretical coefficient of burning rate Equation la
was found to be of the correct order of magnitude for the engine
under consideration, that of burning rate Equation lc was more
like one order of magnitude off.

It should also be pointed out that these calculations show
that the "right order of magnitude" of the vaporization rate co-
efficient will roughly lead to the estimate of the "right order
of magnitude of the combustion length" and this, in general, can

hardly be considered sufficient.
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APPENDIX C: INITIAL DROP DISTRIBUTION FUNCTION

In the first section of this appendix the terminology of
the distribution function is reviewed. 1In the second section
the selection of the particular distribution function used in

this study is justified.

1.0 In this section the paper of Bevans25 is closely followed.
Having a group of drops of different sizes (photo of a spray)

one may consider

Total Number ( N; ),

Total Volume (K, ),

Total Mass (R ) = P (R ).
L /L *T

Then one may be interested in:

’ (N )= total number of drops which have diameters larger than D,
(R' )= total volume of the drops which have diameters larger than D,
(R, )3 total mass of the drops which have diameters larger than D,
where N;‘Q'ﬂL are cumulative forms to express a districution.
[?otice that if one were interested in:

Number of drops which have diameters larger than D,

Volume of drops which have volumes larger than 77D3/‘ .

Mass of drops which have masses larger than P D’/‘
he would come up with the same distribution function in all 3 cases
since the number of drops with volume >17bﬂ/6 is equal to the
number of drops with mass » f ”DJ/G and also equal to the number
of drops with diameter > Q]. Or one may be interested in;

,JjaJ”s number of drops with diameter between D and D + dD
(out of the total number)

. £ 4d2df, = volume of drops with diameter between D and D + dD
(out of the total number)
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fdba dR - mass of the drops with diameter between D and D + dD
A (out of the total number)

where .{H ) fv ) -/" are differential forms to express a distri-
bution (equal to the derivatives of the corresponding cumulative
forms).

Experimentally it has been found that the measured values of

the f 's (distribution functions) versus D are well correlated

P -4>
by a function of the form a D €

Thus, if one sets ¢
—dw S
—_— <
#~ = I = aDd (1)
then 1o . pe —‘Dt
4‘/‘ e ¥ g ad e
v dp (2)

Since f dd is the number of drops having dlameter between
J ﬂ'
D and D + dD and their volume " is E(M))‘f il 'Df

Finally

4; = IL #;

Of the constants appearing in Equation 1, one can say that

(3)

a depends on the size of the sample (since the number
of drops with radius between D and D +dD will be
dependent on the total number of drops)

4 is related to the average drop size

? is related to the spread around the average (high g~
low spread)

b is, in principle, arbitrary
4, g, P are interrelated.
Experimentally it is found that with be2 ,¢=/ (Nukiyama-Tanasawa)

liquid sprays are often well correlated. If ﬁ, fy #, - are
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defined on the basis of a unit mass of liquid in the spray, then

@ is defined in terms of -l‘ q, ,b .

Averages: in general one can define averages by setting

T-K /p’ Jwv j 2772 Jg,
D k
( > i i dh, o DIN
-3 since a
jabew j'p J‘L
Two common averages are
‘ﬁbJﬂ
sum of all diameters _ ..
J%°.'./Jw * total no. of drops gégzeter - number

Vs

= volume - number
mean

D (j'b J” (sum of all volumes)
30 *

_/JN total no. of drops

D3O' equal to the diameter of the average drop volume, is usually

used although the diameter of the average drop projected area

(D2O) should be the one more easily measurable.

Expressing b in terms of DlO’ D30
Havihg ¢
-4£D
2
.# = é£’= ad &
[% D

j:n ¢ 2y ] pyjc'yo/v ,

then D = = e —
1o 'Zp‘c.'".lb f/" y €l ¢
’Jp l y'c’«/y] ) > ¢ 308

also Dyq = ’JD /-' : -y/,}

having recalled that /" '3./, ,’{’”ﬁ)"m.
o

and having set y: 43 .

dRy 1.5 -4D
The same results are obtained from 'Fv = -5--:& De

(4)

(5)
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® 3 -4€d
_[a'b e J»

since D = = Lo —
10 ”, -4 Dio
la > e ‘DJ.D
4> Y.
ﬁ:)re Jn)"? 3.5

and D = > 4=
30 -éD>
z a'D'e J_D Dae
substitutions D, and D3o in Equations 1, 2, and 3 (with p=2 .,

?—I ) one gets

2 -3.915 =

2 -3 2z D
-&,.-.aze do _ad e 3o (1b)

2D -3S%s 5

. , * 3o .
# alb e Dio = a b; e (2b)

b=t ?, . )

The Adistribution functions I b 1 have =0 far heen defin

as fractions of {total
total

volume
mass

total numbei}

total mass

total number
If one divides them by theftotal volumef he gets new distribution

functions giving fractions of{&ﬁi% 33 ng}

unit mass

- “a " za
The total number is given by / J” 3/2—5 y [ y - Z? (7)
o (]

IZOC
The total volume is given by/’f/l, 8/ Fe ,J] = _—— (8)

The total mass is /i times the total volume, hence

[
/20a’
[ J
4. 1b 7
finally dividing l;, . from Equations { 2bJ, by Equations { 8
fn 3b 9
and taking into account Equations 4 and 5, one gets:
2
¥ , 3.5 3 9 -3-9sp,]
f fraction of _ J.( ) e (10)
unit number B D3e
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13 !.9""2
( fraction of (J 7/5) D e P3o (11)
v Lunit volume/ ~ /20 D3e 2
. -3.95 3
fraction ofY _ 3.915') D € e (12)
unit mass /zof Pse
Equation 11 is the equation used by Ingeb026’27. This equation

gives the volume of the drops with diameter between D and D+l
per unit drop volume (in other words, the volume of the drops
with diameter between D and D+1 has been divided by the volume
of all drops included in the sample see Table I of Reference

26).

2.0 The measurements of fuel drop distribution function made

by Ingebo on a Lox/ethanol engine26 { under firing conditions)

and on sprays from impinging n-ileptanc Jets in air qfream527
give us an unusually pertinent amount of information for the
selection of the initial drop distribution function for the
engine under consideration. In 1958, Ingebo, using n-Heptane
impinging jets (900) in air-streams, measured the drop distribu-
tion function at 8" from the impingement point over a specific
range of orifice diameters (DJ).
velocity difference (AV) (see Table I of Ingeboze). He found

liquid jet velocity (VJ) and

that the distribution function 11 correlated well his measure-

ments, i.e.

D
I K /7
] JZ 3. 9/{' 3 Di3e
,v = ‘}"5‘ ,z, D“ (Nukiyama-Tanasawa) (13)
Furthermore, he found the following correlation between D30,
DJ, VJ, and AV

1/‘ . .

Diameters in Inches
2. 2-“(1’; Vr) +.97 Dy AV Velocities in (14)
D3 Feet/sec

TR ——
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In the engine under consideration DJ = ,059", VJ = 2540 cm/sec =

86.7 ft/sec, AV (@ 5") & 4000e¢m/sec = 130 ft/sec and Ingebo's

26

correlation yields D = 111 o . Directly from his table for

30

DJ = ,06, VJ = 65 ft/sec and AV = 115 ft/sec, one reads

D30 = 131 b and Dmax = 325 h .
In 1960 in a Lox/ethanol firing engine, Ingebo27 again found
that the above distribution function correlated well the drop
size measurements at 4" from the injector. The ethanol jets
however were not impinging. He had VJ = 25 ft/sec, DJ = ,032",
Avs 80 ft/sec (estimated from the velocity of his smaller drops)
which, applying his earlier correlation, would have given
D,.~ = 167* . He measured D.. = 155# and D = 3444 , which
oV 3V max '
indicates that his cold flow correlation gives a reasonable esti-
mate of Dy also under firing conditions and different impinge-
ment angle (provided the relative velocity is high enough).
Thus, it was concluded that, for the engine under considera-
tion:
1) A Nu'iyama-Tanasawa distribution function is likely
to give a good description of the drop sizes near

the injector (it will actually be used at the in-
jector).

2) The maximum drop diameter is likely to be between
300 p and 340 . :

3) is likely to be between 110 p and 150 k although

D

tﬁ?s estimate might not be as accurate as the previous
two.

Although :'i: iyama-Tanasawa distribution function was used,

it was not used in the form given by Ingebo (Equation 13, i.e.,

volume of drops with diameter between D and D+1 divided by the
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volume of all drops) but rather in the form 1b (number of

drop with diameter between D and D+l out of the total number

of drops) 2 3.QIS'§;'
- °
{”,: ad ¢

which was actually written as

r <p = 75;
—39F %, F5p =43, (o

2
) =438
f. (01 °) 43% € 150p =y, & 1704
and 4& is then the "total number of drops per unit length of
the combustion chamber with radius between r and r+l" its
dimensions are l/cm2. The following expression will also be

used
Flz2) 504

F(‘"")"= T‘M = local (at x) percentage

»
LT 4
(]
of the initial (at x = 0) number of drops with radius between

r and r + IOP .

Finally the coefficient B, which is related to the total

(15)

number of drops per unit length of combustion chamber at the in-

jector, will have to be determined by proper conditions (see

Appendix F).
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APPENDIX D: SPRAY EQUATION

In the first section of this appendix, the spray equation
is systematically simplified. 1In the second section, the vapor-
ization rate is related to W,/%pfor the case in which 18= F(Z).
In the third section, it is shown that # =f (%) if d(Ws/w,)/dn

= constant.

1.0 The spray equation (see williamsg) can be written as

follows

d’ifz_qif-(nﬁ)—,,%(«.f)-o%(/’f) +q+T (1)

where
a) only liguid fuel drops are considered
b) f£(x, =, % ,t) ds Jx c/‘l(c = total number of drops with

radius between 2 and a+ds , with velocity between e and
% +Jdue in the engine length ow between s and 2 +dm :

’

at timet . Hence the dimensions of # here are (K..X"x..)(}’u.).

c) R=R (% = %, ¢t )m dv/dt = rate of change of 2 follow-
ing a liquid drop.

d) F =TF (R % VU, ¢ E J“‘I/Je = force per unit mass acting
on a liquid drop

e) Q=0 (%2%,Ue ¢ )= the rate of increase of £ due to
drops formation (nucleation) or destruction (break up).

£ " =0 (2,2, Y% ,¢ )= the rate of increase of §£ due to
collisions.

Considering only steady state and neglecting nucleations, break-

ups, and collisions one gets

g%:(‘2¥ )‘*\3&[(‘9'f) +‘;%Q<TF:#D =0 (2)
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where R = R ( =, X,¥% );: F=F (R, x, Ue ); £ = f (4, 2,%, )

and the dimensions of f are (Y. X ot/ X enu ) -

If one assumes that, at any given 2 , all drops having a given 4
have the same velocity, he practically assumes that Ue =% (x¢) .
He can then conceptually substitute this new UewUe [ 2,2) in the

above expressions for R, F, f . thus getting
R (Q‘ 2, U (Q,Q)).-. R(A,2)
F (7 2, % (v,2)= F (¢, z)
F (22 Y (yx) = £(x,2)

and Equation 2 simplifies to
2 2
s (FH)+ oa (% t) =0 (3)

where R = R( ¢, 2 ), f =1 (g2 ).

and the dimensions of f are { i/'u..)(‘/'m ), fd't dx =

total number of drops with radius between 2 and ®+J¢ in the
engine length dx between 2 and 2 +dx.

If one further assumes that, at any given 2 , all drops have a
specific # and a specific 1(< . he practically assumes that
=% (2) and % =% (%). He can then conceptually substitute
these new 2 =2 (x), % =% (&) in the previous expressions for

R and f and get
R((zx),2) = R(=x)

f('t(!),x) = )e(f)

and Equation 3 simplifies to

';d;_('“c)‘) =0 (4)

where f'f(z) 'and z‘(’uf(l)
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and the dimension of .ﬂ is ( Yem ) and szs total number
of drops in the engine length d® between 2¢ and 2+d2 .
If one further assumes that Z(C is constant for all a2¢'s,
e., ”C=290 , the above equation then implies that.ﬁ = const ,
i.e., the total number of drops in the unit engine length is

constant.

2.0 The case in which f: { (2), and U¢=% (%) is now further
considered. Equation 4 is then the spray equation. The proper
way of calculating the local liquid fuel flow rate is to relate
its local change to the local change of drop radius and to the
local number of drops

adz(%i)zx\—\:: e gh e ¥

However, consider the following function

We = 1 4pa’p fu
= y4
pr A Wo 3 f.' (6)

and take its Z =derivative

(Wop) A Vi "”}‘hfuﬁ'r “:i“' rL:;( tf)

then the derivative of Equation 6 is equal to Equation 5 since
L7 J"/d,:—’ ‘h'/dl: and J(".c F)/Jz =0 because of Equation 4.
Thus, the local liquid fuel flow rate calculated by Equation 6
is identical to that calculated by Equation 5 provided in both
equations the same initial value is used. Thus, in this case
Equation 6 can be used to evaluate the local liquid fuel f;ow.

Then using Equation 6 and applying it at any = and at =0 ,
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one gets
I 4
We — "'"'Z fue
o | Ame t f _ Vud
I [Lis,?"":n""ﬁ Y, % £
but ucfgz%f' (Equation 4) thus

VeV, W/
and

3
)= e wP/Wo;

and the drop vaporization rate is given by

Re Gy e dt = B (5) R (3E)

The above equation is valid for both the constant 1(¢ {no drag)

(7)

and the varving g;,a_es, and directly gives the drop vaporization

rate when the local liquid fuel flux is known as in the present

case (Fig. 12).

3.0 A particular case of some interest is that in which

dz ( Wor : (8)

Fig. 12 shows that for the first 16" of the engine under con-
sideration, the above relationship could justifiably be accepted
(a similar trend was found in other engine configurations). One

could then get from Equation 7

dr Re (XY 2g ¥ 2 =4ray dta ¥
dee“”‘f(«,) c;_;-‘-z 4/»1-477‘/;/‘_‘“-« e

When Equation 8 applies, the distribution function must be a

function of a only, and the above vaporization rate proportion-

alities must hold., In general one has

d:’. ue,, A o //‘””‘f RE drdy fef (=, ve)
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For this integral to be constant for all zg's, either the
integrand is zero or
*9 * »
¥<r1)1udjt):='# (59 uﬂ,Q) 5}’{-?!,%;{1&-—ﬂ@‘)

in which case the above integral is equal to

ar ?x) R(=, ‘ll:(’), 2(z)) 16“( z %'(x) ,2"(x)) (9)

since the *ntegrand is zerc for all values of np and E& except
for 2, and ZQ which can still be different at different a '

It then follows that f ==f (®). Furthermore, for Expression

9 to be constant one must have

R: JQ’&—.‘——
& 27

But in the case in which {; ((z), as in this case, it has al-
ready been shown that 'c{ = ll(’.fo . Thus, substituting one
gets
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APPENDIX E: NUMERICAL SOLUTION OF THE SPRAY EQUATION

In the first section of this appendix, the scheme which
was used to integrate the spray equation is explained. 1In
the second section it is shown that there are two identical
and independent ways of computing N;/ka so that the accuracy
of the integration can be tested. 1In the third section it is
shown how a parameter appearing in the initial distribution

function is determined.
1.0 The solution of
2 2 o
q’{("“e)""n.(k’l)’ (1)

where W%e=%e¢( 2 2) ,ﬁ:ﬂ(r,c) , f;f(x‘ag) is equivalent
to the solution of

d&f__ 1T2%, o ]

Jz WC Q.' Ql (2)
along &,2 lines defined by

dr. _ R

dxn Ue

where R is the vaporization rate equation, taken to be of the

following general form

4
R"al:"-[d"’ 9£]where &:2&f’u'u¢l/“and ®,4,9,8 =

constants. Then the above equation becomes

¢
%z'ef;t, [2+34] (3)

In general this equation contains Wew¥, (g()which in turn is

unknown and therefore cannot be solved directly to give A.-'c(x).
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One more equation for‘Uk is needed; the drag equation can be

used
u-te|
qlp e Tie tomy|eud(u-) » T 7 (4)

| -%¢)
[In particular for c 24 one has du .-.ﬁ.— bl ]
P = 24/Re T

Thus one first solves the system of Equations 3 and 4 to get
R=n (X, ., Ue,) , Ue = Ue (2, Xe Ue,) and then evaluates £ by

Equation 2
Hzn) T "J_(zg,, 2% 4,
Bem) / Yo ?x (5)

This is a possible approach to solve Equation 1 for both nu-

merical and analytical methods.

In both cases one must evaluate@R/pyp and PUe/px where RsR(z,4)

and e =g (1,4) . R in general contains 2,72, Uy and Ue 1is
not known explicitly but is defined implicitly by the drag

equation (Eq. 4). Thus one can write

x

fan) (L[ (2R 2R ey, mu] dx o

£ (o n,)' * o Ye % Jexrnicr PUe 2 P
d DerenrdencE

The terms (9R/9a ) and QR/Du( do not present any
ExPuicer depgm.

problem and are given below:

"’ ’
2R - _.!L -L- 24&- - A4 j&_ .L;)
P2 |Explicit - [?,‘ ﬁ 2 n EXplicit{ ’ )t"
Dependence ¢ Dependence
K L -0
e z*["e’ (8-1)-1 (7)
Since
14 _ A
P2 lsxruiery R

DE«lenDuwcE
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also: f"' ?
R __Ktop M _Ki? A
24 8+ P Ug 82 (g-me)
e _ 217 Pu-uel (u-ue) __ K (8)
since ) u! /" ‘7[1(-1“) 71(e (‘u— u!)

The terms 7”(/97, andg"'/‘x were evaluated by finite differ-
ences since uetu((gc)is not explicitly known. For each A&y and
"'o (the same for all%,'s ) the vaporization and the trajec-
tory of the drop were computed, using the vaporization rate
equation (3) and the drag equation (4) and numerically inte-
grating them with respect to 22 . The gas variables appearing
in those equations (‘!,f ) are known from Figures 9 and 10.
Thus, at each 2 , ’u{ and € are now known for each and all the
% 's . To illustrate how these quantities are used to deter-
mine 9u¢/$ob arldfa'm/qz use is made of Figure 47. 1In the upper
portion of this figure, Qle is plotted versus X for various ’!..' S.
A similar set of curves could have been plotted for a for
various 'B's . . Thus at points A and B (at a constant 2 )
both %, and R are known and Auc/A'L at constant 2 can be
evaluated. 1In the lower portion of this figure, Z, 1is plotted
versus % for various®g's . By the 2 -integration of Equations
3 and 4 one moves from point C to point E (and from G to F) by
changing both ‘l(e and 4 . Thus to evaluate d‘ue/dzat constant % ,
it is necessary to extrapolate the value of %y at point D from
its values at points E and F. A linear extrapolation was used

and A'ﬂc/n at constant 4§ was thus determined.
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2.0 It is shown that, if f£ (%4 ) satisfies the following

equation

-;’?{(R';) **a%("f"e)“’

Then the local liquid fuel flow rate can be calculated by

(9)

either of the following two expfﬁgsions
-

¢
_4.(!;)-‘—';[ a2t RED

dﬁ. wbp (10)
R (=)
W, , MAY 3
= = — dndp £ .
Wop A %o, A (11)

Equation 10 relates local changes of liquid fuel flow rate to

the local changes of drop radius ( R) and drop number ( f).

Equation 11 simply counts all the drops going through a specific

cross-section in the unit time. The fact that there are two

different ways to calculate the same parameter, for a given solu-

tion of Equation 9, affords an excellent check on the validity

of the solution itself. This check wasvsystematically included

in the calculations, and was satisfactorily met in all cases.

To apply Equations 10 and 11, one must first determine -{ (Z2)

through Equation 6. Equations 7 and 8 and the finite difference

evaluations of 9"(/):; and 9“(/7, are in the process used. Thus,

there are quite a few numerical computations involved in getting
WF/ Wr and errors can be expected to accumulate. Neverthe-

less, the w'/llo;: calculated by the two methods agree quite close-

ly in all cases. The best agreement was found when the drag is

zero so that two of the three terms appearing in Equation 6 are

identically zero. The largest difference was found when all the
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terms of Equation 6 are different from zero. Even in such cases
the difference is so small that it can hardly be noticed in
figures such as Figure 30. The difference was found to be a
function of Ax (not so much of Aa ) particularly for the high
drag cases where the velocity of the drops undergoes drastic
changes if Ax is too large. 1In most of the calculations A= (O
and AX = .5 cm were used to keep the computation time down
but in the high drag cases it was necessary to use ds¥.25 cm,
thus doubling the computation time.

To prove our statement that Equations 10 and 11 are equiva-

lent, take the z-derivative of Equation 11
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If Equation 9 is satisfied then one can sutstitute
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Substituting and integrating by parts, one gets

d (__P_._i ;Trt(z)f'k (x lz(z))f(, /z.(:u) %)

dx Wor/ A Wo,
%:) ‘ %:;)
- L 4nA7pRE| +— | amaif REd =
L A‘“t

A Wor X A
= A { - 'L (z) fL ﬁ(z (=) )[ z %"”)"d' 't,k) (,9 %:)?j}.'.
Av ¥ (‘)
‘ o 2® dy
el pRE




225

But the term in the above brackets is zer¢ since by
definition Q:'IQZA.: foxj any & including Rparx - Thus the
derivative of Equation 11 is equal to Equation 10 for any 2 .
Thus, the local liquid fuel flow rate calculated by Equation
11 is identical to that calculated by Equation 10 provided, in

both equations, the same initial value is used.

3.0 In Appendix C, the following initial distribution function

was selected _ 3.91¢ {g_
30
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where the factor B was not specified since it is related to

the flow rate into the specific engine under consideration.

Equation 11 can now be used to determine B
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from which it followsthat
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